D at a Sh e e t , D S 1 , Ja n . 2 00 3
ISAC-SX
ISDN Subscriber Access
Controller
PEB 3086, V 1.4
Wired
Communications
N e v e r
s t o p
t h i n k i n g .
ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®,
FALC®, GEMINAX®, IDEC®, INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®,
MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®, QUAT®, QuadFALC®,
SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®,
10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG.
10BaseS™, EasyPort™, VDSLite™ are trademarks of Infineon Technologies AG.
Microsoft® is a registered trademark of Microsoft Corporation. Linux® is a registered
trademark of Linus Torvalds.
The information in this document is subject to change without notice.
Edition 2003-01-30
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München, Germany
© Infineon Technologies AG 2003.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide
(www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Data Sheet
Revision History:
2003-01-30
Previous Version:
Data Sheet, DS1, V1.3, 2000-08-03
Page
Subjects (major changes since last revision)
Chapter 1 Comparison ISAC-S/ISAC-SX
Chapter
3.3.7.2
S- Transceiver Synchronization New
Chapter
3.3.11
Test Functions extended
Chapter
3.7.1.1
CDA Handler Description extended
Chapter
3.7.5.1
TIC Bus Access Control: Note added
Chapter
5.6
IOM-2 Interface Timing: Explanation added
Chapter
5.7.2
Parallel Microcontroller Interface Timing: Explanation added
Chapter
5.10
S-Transceiver
Chapter
5.11
Recommended Transformer Specification: Changed
Chapter
5.12
Line Overload Protection added
Chapter
5.13
EMC/ESD added
DS1
ISAC-SX
PEB 3086
Table of Contents
Page
1
1.1
1.2
1.3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3
3.1
3.2
3.2.1
3.2.1.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.7.1
3.3.7.2
3.3.8
3.3.9
3.3.10
3.3.11
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.1.4
3.5.2
3.5.2.1
Description of Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Functions and Device Architecture . . . . . . . . . . . . . . . . . . . . . . .
Microcontroller Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programming Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parallel Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Activation Indication via Pin ACL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S/T-Interface Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S/T-Interface Multiframing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiframe Synchronization (M-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Transfer and Delay between IOM-2 and S/T . . . . . . . . . . . . . . . .
Transmitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S/T Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Protection Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S-Transceiver Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S/T Interface Delay Compensation (TE/LT-T mode) . . . . . . . . . . . . . . .
Level Detection Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transceiver Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description of the Receive PLL (DPLL) . . . . . . . . . . . . . . . . . . . . . . . . .
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Clock Output C768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control of Layer-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State Machine TE and LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State Transition Diagram (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . .
States (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C/I Codes (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Infos on S/T (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State Machine LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State Transition Diagram (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
4
13
17
19
20
30
30
32
33
34
37
39
41
43
45
46
48
50
52
55
58
59
60
60
62
63
63
64
64
66
69
69
70
71
73
73
75
77
79
80
80
2003-01-30
ISAC-SX
PEB 3086
Table of Contents
3.5.2.2
3.5.2.3
3.5.2.4
3.5.3
3.5.3.1
3.5.3.2
3.5.3.3
3.5.4
3.6
3.6.1
3.6.2
3.6.3
3.7
3.7.1
3.7.1.1
3.7.2
3.7.2.1
3.7.2.2
3.7.3
3.7.3.1
3.7.3.2
3.7.3.3
3.7.3.4
3.7.3.5
3.7.3.6
3.7.4
3.7.5
3.7.5.1
3.7.5.2
3.7.5.3
3.7.5.4
3.7.6
3.8
3.8.1
3.8.2
3.8.3
3.8.3.1
3.8.3.2
3.8.4
3.8.4.1
3.8.4.2
3.8.5
Page
States (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C/I Codes (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Infos on S/T (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
State Machine NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
State Transition Diagram (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
States (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C/I Codes (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Command/ Indicate Channel Codes (C/I0) - Overview . . . . . . . . . . . . . 88
Control Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Example of Activation/Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Activation initiated by the Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Activation initiated by the Network Termination NT . . . . . . . . . . . . . . . . 91
IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
IOM-2 Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Controller Data Access (CDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Serial Data Strobe Signal and Strobed Data Clock . . . . . . . . . . . . . . 107
Serial Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Strobed IOM-2 Bit Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
IOM-2 Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Error Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
MONITOR Channel Programming as a Master Device . . . . . . . . . . 116
MONITOR Channel Programming as a Slave Device . . . . . . . . . . . 117
Monitor Time-Out Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
MONITOR Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C/I Channel Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
TIC Bus D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . 121
S-Bus Priority Mechanism for D-Channel . . . . . . . . . . . . . . . . . . . . 123
S-Bus D-Channel Control in LT-T . . . . . . . . . . . . . . . . . . . . . . . . . . 126
D-Channel Control in the Intelligent NT (TIC- and S-Bus) . . . . . . . . 126
Activation/Deactivation of IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . 130
Auxiliary Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Mode Dependent Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Message Transfer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Structure and Control of the Receive FIFO . . . . . . . . . . . . . . . . . . . 137
Receive Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Structure and Control of the Transmit FIFO . . . . . . . . . . . . . . . . . . 146
Transmit Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Access to IOM-2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Data Sheet
5
2003-01-30
ISAC-SX
PEB 3086
Table of Contents
Page
3.8.6
3.8.7
3.9
Extended Transparent Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
HDLC Controller Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19
4.1.20
4.1.21
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.3
Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D-channel HDLC Control and C/I Registers . . . . . . . . . . . . . . . . . . . . . .
RFIFOD - Receive FIFO D-Channel . . . . . . . . . . . . . . . . . . . . . . . . .
XFIFOD - Transmit FIFO D-Channel . . . . . . . . . . . . . . . . . . . . . . . . .
ISTAD - Interrupt Status Register D-Channel . . . . . . . . . . . . . . . . . . .
MASKD - Mask Register D-Channel . . . . . . . . . . . . . . . . . . . . . . . . . .
STARD - Status Register D-Channel . . . . . . . . . . . . . . . . . . . . . . . . .
CMDRD - Command Register D-Channel . . . . . . . . . . . . . . . . . . . . .
MODED - Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXMD1- Extended Mode Register D-Channel 1 . . . . . . . . . . . . . . . .
TIMR1 - Timer 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAP1 - SAPI1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAP2 - SAPI2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RBCLD - Receive Frame Byte Count Low D-Channel . . . . . . . . . . . .
RBCHD - Receive Frame Byte Count High D-Channel . . . . . . . . . . .
TEI1 - TEI1 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TEI2 - TEI2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RSTAD - Receive Status Register D-Channel . . . . . . . . . . . . . . . . . .
TMD -Test Mode Register D-Channel . . . . . . . . . . . . . . . . . . . . . . . .
CIR0 - Command/Indication Receive 0 . . . . . . . . . . . . . . . . . . . . . . .
CIX0 - Command/Indication Transmit 0 . . . . . . . . . . . . . . . . . . . . . . .
CIR1 - Command/Indication Receive 1 . . . . . . . . . . . . . . . . . . . . . . .
CIX1 - Command/Indication Transmit 1 . . . . . . . . . . . . . . . . . . . . . . .
Transceiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TR_CONF0 - Transceiver Configuration Register 0 . . . . . . . . . . . . . .
TR_CONF1 - Transceiver Configuration Register 1 . . . . . . . . . . . . . .
TR_CONF2 - Transmitter Configuration Register 2 . . . . . . . . . . . . . .
TR_STA - Transceiver Status Register . . . . . . . . . . . . . . . . . . . . . . .
TR_CMD - Transceiver Command Register . . . . . . . . . . . . . . . . . . . .
SQRR1 - S/Q-Channel Receive Register 1 . . . . . . . . . . . . . . . . . . . .
SQXR1- S/Q-Channel TX Register 1 . . . . . . . . . . . . . . . . . . . . . . . . .
SQRR2 - S/Q-Channel Receive Register 2 . . . . . . . . . . . . . . . . . . . . .
SQXR2 - S/Q-Channel TX Register 2 . . . . . . . . . . . . . . . . . . . . . . . . .
SQRR3 - S/Q-Channel Receive Register 3 . . . . . . . . . . . . . . . . . . . .
SQXR3 - S/Q-Channel TX Register 3 . . . . . . . . . . . . . . . . . . . . . . . . .
ISTATR - Interrupt Status Register Transceiver . . . . . . . . . . . . . . . . .
MASKTR - Mask Transceiver Interrupt . . . . . . . . . . . . . . . . . . . . . . . .
TR_MODE - Transceiver Mode Register 1 . . . . . . . . . . . . . . . . . . . . .
Auxiliary Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
6
156
164
164
164
165
166
167
167
168
170
172
172
173
173
173
174
174
175
177
177
178
179
179
180
180
181
181
183
184
185
186
186
186
187
187
187
188
188
190
2003-01-30
ISAC-SX
PEB 3086
Table of Contents
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10
4.4.11
4.4.12
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17
4.4.18
4.4.19
4.4.20
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9
4.6
4.6.1
4.6.2
4.6.3
4.6.4
Page
ACFG1 - Auxiliary Configuration Register 1 . . . . . . . . . . . . . . . . . . . .
ACFG2 - Auxiliary Configuration Register 2 . . . . . . . . . . . . . . . . . . . .
AOE - Auxiliary Output Enable Register . . . . . . . . . . . . . . . . . . . . . . .
ARX - Auxiliary Interface Receive Register . . . . . . . . . . . . . . . . . . . .
ATX - Auxiliary Interface Transmit Register . . . . . . . . . . . . . . . . . . . .
IOM-2 and MONITOR Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CDAxy - Controller Data Access Register xy . . . . . . . . . . . . . . . . . . .
XXX_TSDPxy - Time Slot and Data Port Selection for CHxy . . . . . . .
CDAx_CR - Control Register Controller Data Access CH1x . . . . . . .
TR_CR - Control Register Transceiver Data (IOM_CR.CI_CS=0) . . .
BCH_CR - Control Register B-Channel Controller Data . . . . . . . . . . .
DCI_CR - Control Register for D and CI1 Handler
(IOM_CR.CI_CS=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MON_CR - Control Register Monitor Data . . . . . . . . . . . . . . . . . . . . .
SDSx_CR - Control Register Serial Data Strobe x . . . . . . . . . . . . . . .
IOM_CR - Control Register IOM Data . . . . . . . . . . . . . . . . . . . . . . . .
STI - Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . .
ASTI - Acknowledge Synchronous Transfer Interrupt . . . . . . . . . . . .
MSTI - Mask Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . .
SDS_CONF - Configuration Register for Serial Data Strobes . . . . . .
MCDA - Monitoring CDA Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MOR - MONITOR Receive Channel . . . . . . . . . . . . . . . . . . . . . . . . . .
MOX - MONITOR Transmit Channel . . . . . . . . . . . . . . . . . . . . . . . . .
MOSR - MONITOR Interrupt Status Register . . . . . . . . . . . . . . . . . . .
MOCR - MONITOR Control Register . . . . . . . . . . . . . . . . . . . . . . . . .
MSTA - MONITOR Status Register . . . . . . . . . . . . . . . . . . . . . . . . . .
MCONF - MONITOR Configuration Register . . . . . . . . . . . . . . . . . . .
Interrupt and General Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ISTA - Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MASK - Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AUXI - Auxiliary Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . .
AUXM - Auxiliary Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MODE1 - Mode1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MODE2 - Mode2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ID - Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SRES - Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIMR2 - Timer 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B-Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ISTAB - Interrupt Status Register B-Channel . . . . . . . . . . . . . . . . . . .
MASKB - Mask Register B-Channel . . . . . . . . . . . . . . . . . . . . . . . . . .
STARB - Status Register B-Channel . . . . . . . . . . . . . . . . . . . . . . . . .
CMDRB - Command Register B-channel . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
7
190
190
192
192
193
194
194
195
196
197
198
199
201
202
203
205
206
206
207
207
208
208
208
209
210
210
211
211
212
212
213
213
215
216
216
217
218
218
219
219
220
2003-01-30
ISAC-SX
PEB 3086
Table of Contents
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
Page
MODEB - Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXMB - Extended Mode Register B-Channel . . . . . . . . . . . . . . . . . . .
RAH1 - RAH1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RAH2 - RAH2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RBCLB - Receive Frame Byte Count Low B-Channel . . . . . . . . . . . .
RBCHB - Receive Frame Byte Count High B-Channel . . . . . . . . . . .
RAL1 - RAL1 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RAL2 - RAL2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RSTAB - Receive Status Register B-Channel . . . . . . . . . . . . . . . . . .
TMB -Test Mode Register B-Channel . . . . . . . . . . . . . . . . . . . . . . . . .
RFIFOB - Receive FIFO B-Channel . . . . . . . . . . . . . . . . . . . . . . . . .
XFIFOB - Transmit FIFO B-Channel . . . . . . . . . . . . . . . . . . . . . . . . .
221
222
223
223
224
224
225
225
226
227
228
228
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.7.1
5.7.2
5.8
5.9
5.10
5.11
5.12
5.13
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IOM-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microcontroller Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Control Interface (SCI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . .
Parallel Microcontroller Interface Timing . . . . . . . . . . . . . . . . . . . . . . .
Multiframe Synchronisation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Transformer Specification . . . . . . . . . . . . . . . . . . . . . . .
Line Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EMC / ESD Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
229
229
230
231
232
233
234
237
237
238
242
243
244
245
246
247
6
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Data Sheet
8
2003-01-30
ISAC-SX
PEB 3086
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Data Sheet
Page
Logic Symbol of the ISAC-SX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applications of the ISAC-SX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration of the ISAC-SX . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram of the ISAC-SX. . . . . . . . . . . . . . . . . . . . . .
Serial Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Direct/Indirect Register Address Mode . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status and Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ACL Indication of Activated Layer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
ACL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Wiring Configurations in User Premises . . . . . . . . . . . . . . . . . . . . . . .
S/T -Interface Line Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame Structure at Reference Points S and T (ITU I.430). . . . . . . . . .
Multiframe Synchronization Using the M-Bit . . . . . . . . . . . . . . . . . . . .
Sampling Time in LT-S / NT mode (M-Bit input) . . . . . . . . . . . . . . . . .
Frame Relationship in LT-S / NT mode (M-Bit input) . . . . . . . . . . . . . .
Frame Relationship in TE / LT-T mode (M-Bit output) . . . . . . . . . . . . .
Data Delay between IOM-2 and S/T Interface (TE mode only) . . . . . .
Data Delay between IOM-2 and S/T Interface with S/G Bit Evaluation
(TE mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Delay between IOM-2 and S/T Interface with 8 IOM Channels
(LT-S/NT mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Delay between IOM-2 and S/T Interface with 3 IOM Channels
and Maximum Receive Delay(LT-S/NT mode only). . . . . . . . . . . . . . .
Equivalent Internal Circuit of the Transmitter Stage . . . . . . . . . . . . . .
Equivalent Internal Circuit of the Receiver Stage . . . . . . . . . . . . . . . .
Connection of Line Transformers and Power Supply to the ISAC-SX .
External Circuitry for Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Circuitry for Symmetrical Receivers. . . . . . . . . . . . . . . . . . . .
External Circuitry for Symmetrical Receivers. . . . . . . . . . . . . . . . . . . .
Disabling of S/T Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Loop at the S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock System of the ISAC-SX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Relationships of ISAC-SX Clock Signals . . . . . . . . . . . . . . . . .
Buffered Oscillator Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Layer-1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State Diagram Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
State Transition Diagram (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . .
9
19
20
21
31
33
34
38
39
41
43
44
44
45
45
47
48
49
52
53
53
54
55
56
57
57
58
59
60
61
62
63
64
65
66
69
70
71
72
74
2003-01-30
ISAC-SX
PEB 3086
List of Figures
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Data Sheet
Page
State Transition Diagram of Unconditional Transitions (TE, LT-T) . . . 75
State Transition Diagram (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
State Transition Diagram (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Example of Activation/Deactivation Initiated by the Terminal . . . . . . . 89
Example of Activation/Deactivation initiated by the Terminal (TE).
Activation/Deactivation completely under Software Control . . . . . . . . 90
Example of Activation/Deactivation initiated by the Network Termination
(NT). Activation/Deactivation completely under Software Control . . . . 91
IOMÒ-2 Frame Structure in Terminal Mode . . . . . . . . . . . . . . . . . . . . 93
Multiplexed Frame Structure of the IOM-2 Interface in Non-TE
Timing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Architecture of the IOM Handler (Example Configuration). . . . . . . . . . 96
Data Access via CDAx1 and CDAx2 register pairs . . . . . . . . . . . . . . . 98
Examples for Data Access via CDAxy Registers . . . . . . . . . . . . . . . . . 99
Data Access when Looping TSa from DU to DD . . . . . . . . . . . . . . . . 100
Data Access when Shifting TSa to TSb on DU (DD) . . . . . . . . . . . . . 101
Example for Monitoring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Interrupt Structure of the Synchronous Data Transfer . . . . . . . . . . . . 104
Examples for the Synchronous Transfer Interrupt Control with one
enabled STIxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Strobed IOM-2 Bit Clock. Register SDS_CONF Programmed to 01H 109
Examples of MONITOR Channel Applications in IOM -2 TE Mode . . 110
MONITOR Channel Protocol (IOM-2) . . . . . . . . . . . . . . . . . . . . . . . . 112
Monitor Channel, Transmission Abort requested by the Receiver. . . 115
Monitor Channel, Transmission Abort requested by the Transmitter. 115
Monitor Channel, Normal End of Transmission . . . . . . . . . . . . . . . . . 116
MONITOR Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
CIC Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Applications of TIC Bus in IOM-2 Bus Configuration . . . . . . . . . . . . . 122
Structure of Last Octet of Ch2 on DU . . . . . . . . . . . . . . . . . . . . . . . . 123
Structure of Last Octet of Ch2 on DD . . . . . . . . . . . . . . . . . . . . . . . . 124
D-Channel Access Control on the S-Interface . . . . . . . . . . . . . . . . . . 125
Data Flow for Collision Resolution Procedure in Intelligent NT . . . . . 129
Deactivation of the IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Activation of the IOM-2 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
RFIFO Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Data Reception Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Reception Sequence Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Receive Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Data Transmission Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Transmission Sequence Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10
2003-01-30
ISAC-SX
PEB 3086
List of Figures
Figure 78
Figure 79
Figure 80
Figure 81
Figure 82
Figure 83
Figure 84
Figure 85
Figure 86
Figure 87
Figure 88
Figure 89
Figure 90
Figure 91
Figure 92
Figure 93
Figure 94
Figure 95
Figure 96
Figure 97
Figure 98
Data Sheet
Page
Transmit Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Status Registers of the HDLC Controllers . . . . . . . . . . . . . .
Layer 2 Test Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register Mapping of the ISAC-SX . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input/Output Waveform for AC Tests . . . . . . . . . . . . . . . . . . . . . . . . .
IOM-2 Timing (TE mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IOM-2 Timing (LT-S, LT-T, NT mode) . . . . . . . . . . . . . . . . . . . . . . . .
Definition of Clock Period and Width . . . . . . . . . . . . . . . . . . . . . . . . .
SCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microprocessor Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microprocessor Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microprocessor Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microprocessor Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sampling Time in LT-S/NT Mode (M-Bit Input) . . . . . . . . . . . . . . . . .
Reset Signal RES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Line Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transformer Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
151
153
154
156
232
233
234
235
236
237
238
238
239
239
240
240
241
242
243
246
247
2003-01-30
ISAC-SX
PEB 3086
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Data Sheet
Page
Comparison of the ISAC-SX with the Previous Version ISAC-S . . . . . 14
ISAC-SX Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . 22
Host Interface Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Header Byte Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Bus Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Reset Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ISAC-SX Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
S/Q-Bit Position Identification and Multiframe Structure . . . . . . . . . . . 50
Clock Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Examples for Synchronous Transfer Interrupts . . . . . . . . . . . . . . . . . 104
CDA Register Combinations with Correct Read/Write Access . . . . . 106
Transmit Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Receive Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ISAC-SX Configuration Settings in Intelligent NT Applications . . . . . 127
AUX Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
IOM-2 Channel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
HDLC Controller Address Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Receive Byte Count with RBC11...0 in the RBCHx/RBCLx Registers 139
Receive Information at RME Interrupt . . . . . . . . . . . . . . . . . . . . . . . . 145
XPR Interrupt (availability of XFIFOx) after XTF, XME Commands. . 147
12
2003-01-30
ISAC-SX
PEB 3086
Overview
1
Overview
The ISDN Subscriber Access Controller ISAC-SX integrates a D-channel HDLC
controller and a four wire S/T interface used to link voice/data terminals to the ISDN. It
is based on the ISAC-S PEB 2086, and provides enhanced features and functionality.
It includes the S-transceiver (Layer 1), an HDLC controller for the D-channel and one
B-channel protocol controller (HDLC or transparent) with reduced features dedicated for
firmware download via the B-channel.
The system integration is simplified by several configurations of the parallel
microcontroller interface selected via pin strapping. They include multiplexed and
demultiplexed interface selection as well as the optional indirect register access
mechanism which reduces the number of necessary registers in the address space to 2
locations. The ISAC-SX also provides a serial control interface (SCI).
The FIFO size of the cyclic D-channel buffer is 64 bytes per direction with programmable
block size (threshold). Besides TE mode the S-transceiver supports other terminal
relevant operation modes like line termination subscriber side (LT-S), line termination
trunk side (LT-T) and NT applications (NT, Intelligent NT mode).
An auxiliary I/O port has been added with interrupt capabilities on two input lines. These
programmable I/O lines may be used to connect peripheral components to the ISAC-SX
which need software control or have to forward status information to the host.
Three programmable LED outputs can be used to indicate certain status information,
one of them is capable to indicate the activation status of the S-interface automatically.
The ISAC-SX is produced in advanced CMOS technology.
Data Sheet
13
2003-01-30
ISAC-SX
PEB 3086
Overview
Table 1
Comparison of the ISAC-SX with the Previous Version ISAC-S
ISAC-SX PEB 3086
ISAC-S PEB 2086
Operating modes
TE, LT-T, LT-S, NT, Int. NT TE, LT-T, LT-S, NT
Supply voltage
3.3 V ± 5%
5 V ± 5%
Technology
CMOS
CMOS
Package
P-MQFP-64 / P-TQFP-64
P-MQFP-64 / P-LCC-44
Transceiver
Transformer ratio for the
transmitter
receiver
1:1
1:1
2:1
2:1
Test Functions
- Dig. loop via Layer 2 (TLP) - Dig. loop via Layer 2(TLP)
- Layer 1 disable (DIS_TR) - Layer 1 disable (DIS_TR)
- Analog loop (LP_A- bit
- Analog loop (ARL)
EXLP- bit, ARL)
Microcontroller Interface
Serial interface (SCI)
Not provided
8-bit parallel interface:
Motorola Mux
Siemens/Intel Mux
Siemens/Intel Non-Mux
direct/ indirect Addressing
8-bit parallel interface:
Motorola Mux
Siemens/Intel Mux
Siemens/Intel Non-Mux
Command structure of the
register access (SCI)
Header/address/data
Address/data
Crystal
7.68 MHz
7.68 MHz
Buffered 7.68 MHz output
Provided
Not provided
Controller data access to
IOM-2 timeslots
All timeslots;
Restricted access to
various possibilities of data B- and IC-channel
access
Data control and
manipulation
Various possibilities of data B- and IC-channel looping
control and data
manipulation (enable/
disable, shifting, looping,
switching)
IOM-2
Data Sheet
14
2003-01-30
ISAC-SX
PEB 3086
Overview
ISAC-SX PEB 3086
ISAC-S PEB 2086
IOM-2 Interface
Double clock (DCL),
Double clock (DCL),
bit clock (BCL),
bit clock (BCL),
serial data strobe 1 (SDS1) serial data strobe (SDS)
serial data strobe 2 (SDS2)
Monitor channel
programming
Provided
(MON0, 1, 2, ..., 7)
Provided
(MON0 or 1)
C/I channels
CI0 (4bit),
CI1 (4/6bit)
CI0 (4bit),
CI1 (6bit)
Layer 1 state machine
With changes for
correspondence with the
actual ITU specification
Layer 1 state machine
in software
Possible
Not possible
Support of IDSL (144kBit/s) Provided
(HDLC controller access,
SDS1/2 signals active)
Not provided
D-channel HDLC support
D- and B-channel timeslots;
non-auto mode,
transparent mode 0-2,
extended transparent mode
D-channel timeslot;
auto mode,
non-auto mode,
transparent mode 1-3
D-channel FIFO size
64 bytes cyclic buffer per
direction with
programmable FIFO
thresholds
2x32 bytes buffer per
direction
FW download support
One B-channel controller
Not provided
HDLC support (B-channel)
D- and B-channel timeslots; Not provided
non-auto mode,
transparent mode 0-2,
extended transparent mode
FIFO size (B-channel)
128 bytes cyclic buffer per
direction with
programmable FIFO
thresholds (8 or 16 bytes)
Not provided
Reset Signals
RES input signal
RSTO output signal
RST input/output signal
Data Sheet
15
2003-01-30
ISAC-SX
PEB 3086
Overview
ISAC-SX PEB 3086
ISAC-S PEB 2086
Reset Sources
RES Input
Watchdog
C/I Code Change
EAW Pin
Software Reset
RST Input
Watchdog
C/I Code Change
EAW Pin
Interrupt Output Signals
INT
Low active INT
low active (open drain) by
default, reprogrammable to
high active (push-pull)
Pin SCLK
1.536 MHz
Data Sheet
512 kHz
16
2003-01-30
ISAC-SX
ISDN Subscriber Access Controller
PEB 3086
V 1.4
1.1
Features
• Full duplex 2B + D S/T interface transceiver according
to ITU-T I.430
• Successor of ISAC-S PEB 2086 in 3.3 V technology
• 8-bit parallel microcontroller interface,
Motorola and Siemens/Intel bus type
P-MQFP-64-1, -2, -3, -8
multiplexed or non-multiplexed,
P-MQFP-64-1
direct-/indirect register addressing
• Serial control interface (SCI)
• Microcontroller access to all IOM-2 timeslots
• Various types of protocol support (Non-auto mode,
transparent mode, extended transparent mode)
• One D-channel HDLC controller with 64 byte FIFOs
per direction
• One B-channel HDLC controller with reduced
functionality (e.g. for firmware upgrades)
• IOM-2 interface in TE, LT-T, LT-S and NT mode,
P-TQFP-64-1
single/double clocks and two strobe signals
• D-channel priority handler on IOM-2 for intelligent NT
applications
• Monitor channel handler (master/slave)
• IOM-2 MONITOR and C/I-channel protocol to control peripheral devices
• Conversion of the frame structure between the S/T-interface and IOM-2
• Receive timing recovery
• D-channel access control
• Activation and deactivation procedures with automatic activation from power down
state
• Access to S and Q bits of S/T-interface
• Adaptively switched receive thresholds
Type
Package
PEB 3086 H
P-MQFP-64-1
PEB 3086 F
P-TQFP-64-1
Data Sheet
17
2003-01-30
ISAC-SX
PEB 3086
Overview
•
•
•
•
•
•
•
•
•
•
Auxiliary Interface with general purpose I/O pins and LED drivers
Two programmable timers
Watchdog timer
Software Reset
Multiframe Synchronization
Test loops
Sophisticated power management for restricted power mode
Power supply 3.3 V
3.3 V output drivers, inputs are 5 V safe
Advanced CMOS technology
Data Sheet
18
2003-01-30
ISAC-SX
PEB 3086
Overview
1.2
Logic Symbol
The logic symbol gives an overview of the ISAC-SX functions. It must be noted that not
all functions are available simultaneously, but depend on the selected mode.
Pins which are marked with a “ * “ are multiplexed and not available in all modes.
IOM-2 Interface
+3.3V 0V
0V
2
DU
DD
FSC
DCL
BCL/ SDS1/2
SCLK
VDD VSS TP
VDDA VSSA
RD / DS
C768
WR / R/W
XTAL2
ALE
XTAL1
7.68 MHz output
7.68 MHz ± 100ppm
A0...7
SR1
AD0...4
Host
Interface
SR2
AD5 / SCL
S Interface
SX1
AD6 / SDR
SX2
AD7 / SDX
CS
MODE0
INT
MODE1 / EAW
RES
AMODE
RSTO
AUX0...7 *
INT0/1 *
2
General
purpose I/O
Mode
Setting
External
Interrupts
CH0...2 *
AUX6/7* / ACL
3
MBIT *
3
IOM channel
select
LED Output
Multiframe
Sync.
21150_17
Auxiliary Interface
Figure 1
Data Sheet
Logic Symbol of the ISAC-SX
19
2003-01-30
ISAC-SX
PEB 3086
Overview
1.3
Typical Applications
The ISAC-SX is designed for the user area of the ISDN basic access, especially for
subscriber terminal equipment and for exchange equipment with S interface.
Figure 2 illustrates the general application fields of the ISAC-SX.
PABX (NT2)
TE(1)
TE(8)
S
CP
SN
TE(1)
U
T
LT-S
LT-T
NT1
LT-S
CP = Central
Processor
Line
Card
TE(1)
TE(8)
= ISAC R -SX
SN = Switching
Network
Direct Subscriber Access
(point-to-point, short and extended
passive Bus)
U
S
NT1
ITS02315
Figure 2
Data Sheet
Applications of the ISAC-SX
20
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
2
Pin Configuration
P-MQFP-64-1
VSS
VDD
XTAL1
AMODE
VSS
XTAL2
WR / R/W
RD / DS
n.c.
ALE
SX2
SX1
VDDA
VSSA
SR2
SR1
P-TQFP-64-1
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
BCL / SCLK
DU
49
32
AUX2
50
31
DD
FSC
51
52
53
30
29
28
AUX1
AUX0
54
55
27
26
C768
A7
25
A6
24
23
A5
DCL
VSS
VSS
VDD
ISAC-SX
PEB 3086
56
MODE0
MODE1 / EAW
57
58
ACL
AUX7
59
22
A4
A3
60
61
21
20
A2
A1
62
19
63
18
A0
VDD
64
17
VSS
Data Sheet
SDR / AD6
SDX / AD7
AD4
SCL / AD5
AD3
AD1
AD2
9 10 11 12 13 14 15 16
AD0
VSS
3 4 5 6 7 8
VDD
2
INT
n.c.
1
RES
RSTO
AUX5
AUX4
AUX3
CS
TP
AUX6
Figure 3
SDS1
SDS2
21550_22.vsd
Pin Configuration of the ISAC-SX
21
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions
Pin No. Symbol
MQFP-64
TQFP-64
Input (I)
Function
Output (O)
Open Drain
(OD)
Host Interface
19
20
21
22
23
24
25
26
A0
A1
A2
A3
A4
A5
A6
A7
I
I
I
I
I
I
I
I
• Non-Multiplexed Bus Mode:
Address Bus
Address bus transfers addresses from the
microcontroller to the ISAC-SX. For indirect address
mode only A0 is valid (A1-A7 to be connected to
VDD).
• Multiplexed Bus Mode:
Not used in multiplexed bus mode. In this case
A0-A7 should directly be connected to VDD.
9
10
11
12
13
AD0
AD1
AD2
AD3
AD4
I/O
I/O
I/O
I/O
I/O
• Multiplexed Bus Mode:
Address/data bus
Transfers addresses from the microcontroller to the
ISAC-SX and data between the microcontroller and
the ISAC-SX.
• Non-Multiplexed Bus Mode:
Data bus
Transfers data between the microcontroller and the
ISAC-SX.
14
AD5
I/O
• Multiplexed Bus Mode:
Address/data bus
Address/data line AD5 if the parallel interface is
selected.
• Non-Multiplexed Bus Mode:
Data bus
Data line D5 if the parallel interface is selected.
SCL
I
SCI - Serial Clock
Clock signal of the SCI interface if a serial interface
is selected.
Data Sheet
22
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions (cont’d)
Pin No. Symbol
MQFP-64
TQFP-64
15
16
39
40
Input (I)
Function
Output (O)
Open Drain
(OD)
AD6
I/O
• Multiplexed Bus Mode:
Address/data bus
Address/data line AD6 if the parallel interface is
selected.
• Non-Multiplexed Bus Mode:
Data bus
Data line D6 if the parallel interface is selected.
SDR
I
SCI - Serial Data Receive
Receive data line of the SCI interface if a serial
interface is selected.
AD7
I/O
• Multiplexed Bus Mode:
Address/data bus
Address/data line AD7 if the parallel interface is
selected.
• Non-Multiplexed Bus Mode:
Data bus
Data line D7 if the parallel interface is selected.
SDX
OD
SCI - Serial Data Transmit
Transmit data line of the SCI interface if a serial
interface is selected.
RD
I
DS
I
Read
Indicates a read access to the registers (Siemens/
Intel bus mode).
Data Strobe
The rising edge marks the end of a valid read or
write operation (Motorola bus mode).
WR
I
R/W
I
Data Sheet
Write
Indicates a write access to the registers (Siemens/
Intel bus mode).
Read/Write
A HIGH identifies a valid host access as a read
operation and a LOW identifies a valid host access
as a write operation (Motorola bus mode).
23
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions (cont’d)
Pin No. Symbol
MQFP-64
TQFP-64
Input (I)
Function
Output (O)
Open Drain
(OD)
41
ALE
I
Address Latch Enable
A HIGH on this line indicates an address on the
external address/data bus (multiplexed bus type
only).
ALE also selects the microcontroller interface bus
type (multiplexed or non multiplexed).
3
CS
I
Chip Select
A low level indicates a microcontroller access to the
ISAC-SX.
1
INT
OD (O)
Interrupt Request
INT becomes active low (open drain) if the ISAC-SX
requests an interrupt.
The polarity can be reprogrammed to high active
with push-pull characteristic.
5
RES
I
Reset
A LOW on this input forces the ISAC-SX into a reset
state.
38
AMODE
I
Address Mode
Selects between direct (0) and indirect (1) register
access mode.
IOM-2 Interface
52
FSC
I/O
Frame Sync
8-kHz frame synchronization signal.
53
DCL
I/O
Data Clock
IOM-2 interface clock signal (double clock) (e.g
1.536 MHz in TE mode).
Data Sheet
24
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions (cont’d)
Pin No. Symbol
MQFP-64
TQFP-64
Input (I)
Function
Output (O)
Open Drain
(OD)
49
BCL/
SCLK
O
Bit Clock/S-Clock
TE-Mode:
Bit clock output, identical to IOM-2 data rate (DCL/
2).
LT-T Mode:
1.536 MHz output synchronous to S-interface.
NT / LT-S Mode:
Bit clock output derived from the DCL input clock
divided by 2.
51
DD
I/O (OD)
Data Downstream
IOM-2 data signal in downstream direction.
50
DU
I/O (OD)
Data Upstream
IOM-2 data signal in upstream direction.
29
SDS1
O
Serial Data Strobe 1
Programmable strobe signal for time slot and/or
D-channel indication on IOM-2.
28
SDS2
O
Serial Data Strobe 2
Programmable strobe signal for time slot and/or
D-channel indication on IOM-2.
Auxiliary Interface
30
31
32
AUX0
AUX1
AUX2
I/O (OD)
I/O (OD)
I/O (OD)
• TE-Mode:
Auxiliary Port 0 - 2 (input/output)
These pins are individually programmable as
general input/output. The state of the pin can be
read from (input) / written to (output) a register.
• LT-T/LT-S/NT Mode:
CH0-2 - IOM-2 Channel Select (input)
These pins select one of eight channels on the IOM2 interface.
64
AUX3
I/O (OD)
Auxiliary Port 3 (input/output)
This pin is programmable as general input/output.
The state of the pin can be read from (input) / written
to (output) a register.
Data Sheet
25
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions (cont’d)
Pin No. Symbol
MQFP-64
TQFP-64
Input (I)
Function
Output (O)
Open Drain
(OD)
63
AUX4
I/O (OD)
• Auxiliary Port 4 (input/output)
This pin is programmable as general input/output.
The state of the pin can be read from (input) / written
to (output) a register.
• MBIT (input/output)
If ACFG2.A4SEL is set to ’1’, pin AUX4 is used as
M-bit input (LT-S / NT / Int. NT mode) or as M-bit
output (TE / LT-T mode) for multiframe
synchronization.
62
AUX5
I/O (OD)
• Auxiliary Port 5 (input/output)
This pin is programmable as general input/output.
The state of the pin can be read from (input) / written
to (output) a register.
• FBOUT - FSC/BCL output
If ACFG2.A5SEL is set to ’1’, pin AUX5 outputs
either an FSC signal or a BCL signal selected via
ACFG2.FBS.
61
AUX6
I/O (OD)
INT0
This pin is programmable as general input/output.
The state of the pin can be read from (input) / written
to (output) a register.
Additionally, as input it can generate a maskable
interrupt to the host, which is either edge or level
triggered. An internal pull up resistor is connected to
this pin (open drain mode only), if push pull
characteristic is selected no pull up is available.
As output an LED can directly be connected to this
pin.
Data Sheet
26
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions (cont’d)
Pin No. Symbol
MQFP-64
TQFP-64
60
AUX7
Input (I)
Function
Output (O)
Open Drain
(OD)
I/O (OD)
INT1
This pin is programmable as general input/output.
The state of the pin can be read from (input) / written
to (output) a register.
Additionally, as input it can generate a maskable
interrupt to the host, which is either edge or level
triggered. An internal pull up resistor is connected to
this pin (open drain mode only), if push pull
characteristic is selected no pull up is available.
As output an LED can directly be connected to this
pin.
SGO
Instead of the above described function, AUX7 can
also be programmed to output the S/G bit signal
from the IOM-2 DD line.
Miscellaneous
43
44
SX1
SX2
O
O
S-Bus Transmitter Output (positive)
S-Bus Transmitter Output (negative)
47
48
SR1
SR2
I
I
S-Bus Receiver Input
S-Bus Receiver Input
35
XTAL1
I
36
XTAL2
O
Crystal 1
Connection for a crystal or used as external clock
input. 7.68 MHz clock or crystal required.
Crystal 2
Connection for a crystal. Not connected if an
external clock is supplied to XTAL1.
57
MODE0
I
Data Sheet
Mode 0 Select
A LOW selects TE-mode and a HIGH selects LT-T /
LT-S mode (see MODE1/EAW).
27
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions (cont’d)
Pin No. Symbol
MQFP-64
TQFP-64
Input (I)
Function
Output (O)
Open Drain
(OD)
58
The pin function depends on the setting of MODE0.
If MODE0=1: Mode 1 Select
A LOW selects LT-T mode and a HIGH selects LTS mode.
If MODE0=0: External Awake
If a falling edge on this input is detected, the ISACSX generates an interrupt and, if enabled, a reset
pulse.
MODE1
I
EAW
I
59
ACL
O
Activation LED
This pin can either function as a programmable
output or it can automatically indicate the activated
state of the S interface by a logic ’0’.
An LED with pre-resistance may directly be
connected to ACL.
27
C768
O
Clock Output
A 7.68 MHz clock is output to support other devices.
This clock is not synchronous to the S interface.
6
RSTO
OD
Reset Output
Low active reset output, either from a watchdog
timeout or programmed by the host.
4
TP
I
Test Pin
Must be connected to VSS.
2, 42
n.c.
I
not connected
Power Supply
8, 18,
33, 56
VDD
–
Digital Power Supply Voltage
(3.3 V ± 5 %)
46
VDDA
–
Analog Power Supply Voltage
(3.3 V ± 5 %)
Data Sheet
28
2003-01-30
ISAC-SX
PEB 3086
Pin Configuration
Table 2
ISAC-SX Pin Definitions and Functions (cont’d)
Pin No. Symbol
MQFP-64
TQFP-64
7, 17,
VSS
34, 37,
54, 55
45
VSSA
Data Sheet
Input (I)
Function
Output (O)
Open Drain
(OD)
–
Digital ground
(0 V)
–
Analog ground
(0 V)
29
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3
Description of Functional Blocks
3.1
General Functions and Device Architecture
Figure 4 shows the architecture of the ISAC-SX containing the following functions:
• S/T-interface transceiver supporting the modes TE, LT-T, LT-S, NT and Intelligent NT
• Different host interface modes:
- Parallel microcontroller interface
(Siemens/Intel multiplexed, Siemens/Intel non multiplexed, Motorola modes)
- Serial Control Interface (SCI)
• Optional indirect register address mode reduces number of registers to be accessed
to two locations
• One D-channel HDLC-controller with 64 byte FlFOs per direction with programmable
FIFO block size (threshold) of 4, 8, 16 or 32 byte for receive direction and 16 or 32
byte for transmit direction
• Support of firmware download via one B-channel HDLC-controller and FlFOs with
reduced functionality
• IOM-2 interface for terminal (TE mode), linecard (LT-T or LT-S) or NT applications
• IOM handler with controller data access registers (CDA) allows flexible access to IOM
timeslots for reading/writing, looping and shifting data
• Synchronous transfer interrupts (STI) allow controlled access to IOM timeslots
• Flexible timeslot assignment of HDLC controllers on IOM for IDSL support
• MONITOR channel handler on IOM-2 for master mode, slave mode or data exchange
• C/I-channel handler and TIC bus access controller
• D-channel access mechanism in all modes
• D-channel priority handler on IOM-2 for intelligent NT applications
• Capability to control the start of the multiframe for synchronization from external
signals (M-bit input pin in LT-S/NT mode, M-bit output pin in TE, LT-T mode)
• Auxiliary interface with interrupt and general purpose I/O lines and 2 LED drivers
• LED connected to pin ACL indicates S-interface activation status automatically or can
be controlled by the host
• Level detect circuit on the S interface reduces power consumption in power down
mode
• Two timers for periodic or single interrupts (periods between 1 ms and 14.336 s)
• Clock and timing generation
• Digital PLL to synchronize the transceiver to the S/T interface
• Buffered 7.68 MHz oscillator clock output allows connection of further devices and
saves another crystal on the system board
• Reset generation (watchdog timer)
Data Sheet
30
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Peripheral Devices
IOM-2 Interface
IOM-2 Handler
S Transceiver
I/O- and
Interrupt
Lines
Auxiliary
Interface
B-channel
HDLC
D-channel
HDLC
RX/TX
FIFOs
RX/TX
FIFOs
MON
Handler
TIC
C/I
DPLL
Host Interface
8-bit parallel
SCI
Reset
Interrupt
-generation
OSC
3086_18
Host
Figure 4
Data Sheet
Functional Block Diagram of the ISAC-SX
31
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.2
Microcontroller Interfaces
The ISAC-SX supports a serial or a parallel microcontroller interface. For applications
where no controller is connected to the ISAC-SX microcontroller interface programming
is done via the IOM-2 MONITOR channel from a master device. In such applications the
ISAC-SX operates in the IOM-2 slave mode (refer to the corresponding chapter of the
IOM-2 MONITOR handler). This mode is suitable for control functions (e.g. programming
registers of the S/T transceiver), but the bandwidth is not sufficient for access to the
HDLC controllers.
The interface selections are all done by pinstrapping (see Table 3). The selection pins
are evaluated when the reset input RES is active. For the pin levels stated in the tables
the following is defined:
’High’, ’Low’: dynamic pin; value must be ’High’ or ’Low’ only during reset
static pin; pin must statically be strapped to ’High’ or ’Low’ level
VDD, VSS:
edge:
dynamic pin; any transition (’High’ to ’Low’, ’Low’ to ’High’) has occured
Table 3
Host Interface Selection
PINS
WR
(R/W)
RD
(DS)
Serial /Parallel
PINS
Interface
CS
ALE
VDD
’High’
’High’ Parallel
‘High’ VSS
edge
VSS
VSS
Serial
’High’ VSS
No
Host Interface
VSS
VSS
Interface
Type/Mode
Motorola
Siemens/Intel Non-Mux
Siemens/Intel Mux
Serial Control Interface(SCI)
IOM-2 MONITOR Channel
(Slave Mode)
Note: For a selected interface mode which doesn’t need all input selection and address
pins the unused pins must be tied to VDD or VSS.
The interfaces contain all circuitry necessary for the access to programmable registers,
status registers and HDLC FIFOs. The mapping of all these registers can be found in
Chapter 4.
The microcontroller interface also provides an interrupt request at pin INT which is low
active by default but can be reprogrammed to high active, a reset input pin RES and a
reset output pin RSTO.
The interrupt request pin INT becomes active if the ISAC-SX requests an interrupt and
this can occur at any time.
Data Sheet
32
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.2.1
Serial Control Interface (SCI)
The serial control interface (SCI) is compatible to the SPI interface of Motorola or
Siemens C510 family of microcontrollers.
The SCI consists of 4 lines: SCL, SDX, SDR and CS. Data is transferred via the lines
SDR and SDX at the rate given by SCL. The falling edge of CS indicates the beginning
of a serial access to the registers. The ISAC-SX latches incoming data at the rising edge
of SCL and shifts out at the falling edge of SCL. Each access must be terminated by a
rising edge of CS. Data is transferred in groups of 8 bits with the MSB first.
Figure 5 shows the timing of a one byte read/write access via the serial control interface.
Write Access
CS
SCL
Header
SDR
Address
Data
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
'0'
write
SDX
Read Access
CS
SCL
Header
SDR
Address
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
'1'
read
Data
7 6 5 4 3 2 1 0
SDX
21150_19
Figure 5
Data Sheet
Serial Control Interface Timing
33
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.2.1.1
Programming Sequences
The basic structure of a read/write access to the ISAC-SX registers via the serial control
interface is shown in Figure 6.
write sequence:
write
byte 2
0
header
SDR
7
address
0 7 6
read sequence:
byte 3
write data
0 7
0
read
byte 2
header
SDR
7
1
address
0 7 6
0 7
SDX
Figure 6
byte 3
0
read data
Serial Control Interface Timing
A new programming sequence starts with the transfer of a header byte. The header byte
specifies different programming sequences allowing a flexible and optimized access to
the individual functional blocks of the ISAC-SX.
The possible sequences for access to the complete address range 00H-7FH are listed in
Table 4 and described after that.
Table 4
Header
Byte
Header Byte Code
Sequence
40H/44H
48H/4CH
Alternating Read/Write (non-interleaved)
Adr-Data-Adr-Data
43H/47H
41H/45H
49H/4DH
Sequence Type
Alternating Read/Write (interleaved)
Read-only/Write-only (constant address)
Adr-Data-Data-Data
Read and following Write-only (non-interleaved)
Read and following Write-only (interleaved)
Note: In order to access the address range 00H-7FH bit 2 of the header byte must be set
to ’0’ (header bytes 40H, 48H, 43H, 41H, 49H), and for the addresses 80H-FFH bit 2
must be set to ’1’ (header bytes 44H, 4CH, 47H, 45H, 4DH).
Data Sheet
34
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Header 40H: Non-interleaved A-D-A-D Sequences
The non-interleaved A-D-A-D sequence gives direct read/write access to the complete
address range and can have any length. In this mode SDX and SDR can be connected
together allowing data transmission on one line.
Example for a read/write access with header 40H:
SDR header wradr wrdata
rdadr
SDX
rdadr
rddata
wradr wrdata
rdata
Header 48H: Interleaved A-D-A-D Sequences
The interleaved A-D-A-D sequence gives direct read/write access to the complete
address range and can have any length. This mode allows a time optimized access to
the registers by interleaving the data on SDX and SDR (SDR and SDX must not be
connected together).
Example for a read/write access with header 48H:
SDR header wradr wrdata
rdadr
SDX
rdadr
wradr wrdata
rddata rddata
Header 43H: Read-/Write- only A-D-D-D Sequence (Constant Address)
This mode can be used for a fast access to the HDLC FIFO data. Any address (rdadr,
wradr) in the range 00H-1FH and 6AH/7AH gives access to the current FIFO location
selected by an internal pointer which is automatically incremented with every data byte
following the first address byte. The sequence can have any length and is terminated by
the rising edge of CS.
Example for a write access with header 43H:
SDR header wradr wrdata wrdata wrdata wrdata wrdata wrdata wrdata
(wradr)
(wradr)
(wradr)
(wradr)
(wradr)
(wradr)
(wradr)
SDX
Example for a read access with header 43H:
SDR header rdadr
SDX
rddata rddata rddata rddata rddata rddata rddata
(rdadr)
Data Sheet
(rdadr)
(rdadr)
35
(rdadr)
(rdadr)
(rdadr)
(rdadr)
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Header 41H: Non-interleaved A-D-D-D Sequence
This sequence allows in front of the A-D-D-D write access a non-interleaved A-D-A-D
read access. This mode is useful for reading status information before writing to the
HDLC XFIFO. The termination condition of the read access is the reception of the wradr.
The sequence can have any length and is terminated by the rising edge of CS.
Example for a read/write access with header 41H:
SDR header rdadr
wradr wrdata wrdata wrdata
rdadr
(wradr)
SDX
rddata
(wradr)
(wradr)
rddata
Header 49H: Interleaved A-D-D-D Sequence
This sequence allows in front of the A-D-D-D write access an interleaved A-D-A-D read
access. This mode is useful for reading status information before writing to the HDLC
XFIFO. The termination condition of the read access is the reception of the wradr. The
sequence can have any length and is terminated by the rising edge of the CS line.
Example for a read/write access with header 49H:
SDR header rdadr
rdadr
wradr wrdata wrdata wrdata
(wradr)
SDX
Data Sheet
(wradr)
(wradr)
rddata rddata
36
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.2.2
Parallel Microcontroller Interface
The 8-bit parallel microcontroller interface with address decoding on chip allows easy
and fast microcontroller access.
The parallel interface of the ISAC-SX provides three types of mP buses which are
selected via pin ALE. The bus operation modes with corresponding pins are listed in
Table 5.
Table 5
Bus Operation Modes
Bus Mode
Pin ALE
Control Pins
(1)
Motorola
VDD
CS, R/W, DS
(2)
Siemens/Intel non-multiplexed
VSS
CS, WR, RD
(3)
Siemens/Intel multiplexed
Edge
CS, WR, RD, ALE
The occurrence of an edge on ALE, either positive or negative, at any time during the
operation immediately selects the interface type (3). A return to one of the other interface
types is possible only if a hardware reset is issued.
Note: If the multiplexed address/data bus type (3) is selected, the unused address pins
A0-A7 must be tied to VDD.
A read/write access to the ISAC-SX registers can be done in multiplexed or nonmultiplexed mode:
• In non-multiplexed mode the register address must be applied to the address bus (A0A7) for the data access via the data bus (AD0-AD7).
• In multiplexed mode the address on the address/data bus (AD0-AD7) is latched in by
ALE before a data read/write access via the same bus is performed.
The ISAC-SX provides two different ways to address the register contents which is
selected with the AMOD pin (’0’ = direct mode, ’1’ = indirect mode). Figure 7 illustrates
both register addressing modes.
Direct address mode (AMOD = ’0’): The register address to be read or written is directly
set in the way described above.
Indirect address mode (AMOD = ’1’): Only the LSB of the address is used to select
either the address register (A0 = ’0’) or the data register (A0 = ’1’). The microcontroller
writes the register address to the ADDRESS register before it reads/writes data from/to
the corresponding DATA register.
In indirect address mode the ISAC-SX evaluates no address line except the least
significant address bit. The remaining address lines must not be left open but have to be
tied to logical ’1’.
Data Sheet
37
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Indirect Address Mode
MODE2:AMOD=1
Address
A0
Direct Address Mode
MODE2:AMOD=0
Data
AD0-7
Address
A0-7
Data
AD0-7
8Fh
8Eh
Address
1h
0h
Data
:
:
01h
00h
DATA
ADDRESS
21150_11
Figure 7
Data Sheet
Direct/Indirect Register Address Mode
38
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.2.3
Interrupt Structure
Special events in the device are indicated by means of a single interrupt output, which
requests the host to read status information from the device or transfer data from/to the
device.
Since only one interrupt request pin (INT) is provided, the cause of an interrupt must be
determined by the host reading the interrupt status registers of the device.
The structure of the interrupt status registers is shown in Figure 8.
B-channel
MASKB
RME
MASK
ICB
RPF
RPF
RFO
RFO
XPR
XPR
XDU
XDU
ISTA
ICB
ST
ST
CIC
CIC
AUX
AUX
TRAN
TRAN
MOS
MOS
ICD
ICD
Interrupt
ISTAB
RME
Data Sheet
STI
STOV21
STOV20
STOV20
STOV11
STOV11
STOV10
STOV10
STI21
STI21
ACK21
STI20
STI20
ACK20
STI11
STI11
ACK11
STI10
STI10
ACK10
ASTI
CIX1
CIR0
CIC0
CI1E
CIC1
EAW
EAW
LD
WOV
WOV
RIC
RIC
TIN2
TIN2
SQC
SQC
TIN1
TIN1
SQW
ISTATR
INT1
INT1
INT0
AUXM
INT0
AUXI
LD
RME
RME
RPF
RPF
RFO
RFO
XPR
XPR
XMR
XMR
MRE
XDU
MASKD
XDU
ISTAD
MIE
MDA
MOCR
MAB
MOSR
D-channel
Figure 8
MSTI
STOV21
SQW
MASKTR
MDR
MER
3086_16.vsd
Interrupt Status and Mask Registers
39
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
All seven interrupt bits in the ISTA register point at interrupt sources in the D-channel
HDLC Controller (ICD), B-channel HDLC controller (ICB), Monitor- (MOS) and C/I- (CIC)
handler, the transceiver (TRAN), the synchronous transfer (ST) and the auxiliary
interrupts (AUXI).
All these interrupt sources are described in the corresponding chapters. After the device
has requested an interrupt activating the interrupt pin (INT), the host must read first the
device interrupt status register (ISTA) in the associated interrupt service routine. The
interrupt pin of the device remains active until all interrupt sources are cleared by reading
the corresponding interrupt register. Therefore it is possible that the interrupt pin is still
active when the interrupt service routine is finished.
Each interrupt indication of the interrupt status registers can selectively be masked by
setting the respective bit in the MASK register.
For some interrupt controllers or hosts it might be necessary to generate a new edge on
the interrupt line to recognize pending interrupts. This can be done by masking all
interrupts at the end of the interrupt service routine (writing FFH into the MASK register)
and write back the old mask to the MASK register.
Data Sheet
40
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.2.4
Reset Generation
Figure 9 shows the organization of the reset generation of the device.
.
C/I Code Change
(Exchange Awake)
RSS1
125µs £ t £ 250µs
³1
EAW
(Subscriber Awake)
125µs £ t £ 250µs
'0'
'1x'
'1'
'01'
'00'
³1
Software Reset
Register (SRES)
' 01 '
RSS2,1
125µs £ t £ 250µs
Watchdog
(reserved)
RSS2,1
³1
Pin
RSTO
125µs £ t £ 250µs
D, C/I-channel (00H-2FH)
Transceiver (30H-3FH)
Reset
IOM-2 (40H-5BH)
Functional
MON-channel (5CH-5FH)
Block
General Config (60H-6FH)
B-channel (70H-7FH)
Reset MODE1 Register
Pin
RES
Internal Reset of all Registers
3086_21
Figure 9
Reset Generation
Reset Source Selection
The internal reset sources C/I code change, EAW and Watchdog can be output at the
low active reset pin RSTO. The selection of these reset sources can be done with the
RSS2,1 bits in the MODE1 register according Table 6.
The setting RSS2,1 = ’01’ is reserved for further use. In this case no reset except
software reset (SRES.RSTO) is output on RSTO. The internal reset sources set the
MODE1 register to its reset value.
Data Sheet
41
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Table 6
Reset Source Selection
RSS2
Bit 1
RSS1
Bit 0
C/I Code
Change
EAW
Watchdog
Timer
0
0
--
--
--
0
1
1
0
x
x
--
1
1
--
--
x
reserved
• C/I Code Change (Exchange Awake)
A change in the downstream C/I channel (C/I0) generates an external reset pulse of
125 µs £ t £ 250 µs.
• EAW (Subscriber Awake)
A low level on the EAW input starts the oscillator from the power down state and
generates a reset pulse of 125 µs £ t £ 250 µs.
• Watchdog Timer
After the selection of the watchdog timer (RSS = ’11’) an internal timer is reset and
started. During every time period of 128 ms the microcontroller has to program the
WTC1- and WTC2 bits in the following sequence to reset and restart the watchdog timer:
1.
2.
WTC1
WTC2
1
0
0
1
If not, the timer expires and a WOV-interrupt (ISTA Register) together with a reset pulse
of 125 µs is generated.
Deactivation of the watchdog timer is only possible with a hardware reset.
External Reset Input
At the RES input an external reset can be applied forcing the device in the reset state.
This external reset signal is additionally fed to the RSTO output. The length of the reset
signal is specified in Chapter 5.9.
After an external reset from the RES pin all registers of the device are set to its reset
values (see register description in Chapter 4).
Software Reset Register (SRES)
Every main functional block of the device can be reset separately by software setting the
corresponding bit in the SRES register. A reset to external devices can also be controlled
in this way. The reset state is activated by setting the corresponding bit to ’1’ and onchip
Data Sheet
42
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
logic resets this bit again automatically after 4 BCL clock cycles. The address range of
the registers which will be reset at each SRES bit is listed in Figure 9.
3.2.5
Timer Modes
The ISAC-SX provides two timers which can be used for various purposes. Each of them
provides two modes (Table 7), a count down timer interrupt, i.e. an interrupt is generated
only once after expiration of the selected period, and a periodic timer interrupt, which
means an interrupt is generated continuously after every expiration of that period.
Table 7
Address
24H
65H
ISAC-SX Timers
Register
TIMR1
TIMR2
Modes
Period
Periodic
64 ... 2048 ms
Count Down
64 ms ... 14.336 s
Periodic
1 ... 63 ms
Count Down
1 ... 63 ms
When the programmed period has expired an interrupt is generated and indicated in the
auxiliary interrupt status ISTA.AUX. The source of the interrupt can be read from AUXI
(TIN1, TIN2) and each of the interrupt sources can be masked in AUXM.
MASK
ICB
ST
CIC
AUX
TRAN
MOS
ICD
ISTA
ICB
AUXM
EAW
WOV
TIN2
TIN1
INT1
INT0
ST
CIC
AUX
TRAN
MOS
ICD
AUXI
EAW
WOV
TIN2
TIN1
INT1
INT0
Interrupt
Figure 10
Data Sheet
Timer Interrupt Status Registers
43
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Timer 1
The host controls the timer 1 by setting bit CMDRD.STI to start the timer and by writing
register TIMR1 to stop the timer. After time period T1 an interrupt (AUXI.TIN1) is
generated continuously if CNT=7 or a single interrupt is generated after timer period T if
CNT TE) F
D
E D
M
E
B1
B2
B1
B1 B2 D
E
B1 B2 D
D
E
B2
D
F
E
D
E
D
E
B1
B2
B1
B1 B2 D
E
B1 B2 D
D
E
D
B2
FSC
DD (o)
MBIT (o)
E
M i-1
E
M
21150_30
Figure 21
Data Sheet
Frame Relationship in TE / LT-T mode (M-Bit output)
54
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.3.4
Data Transfer and Delay between IOM-2 and S/T
TE mode
In the state F7 (Activated) or if the internal layer-1 statemachine is disabled and XINF of
register TR_CMD is programmed to ’011’ the B1, B2, D and E bits are transferred
transparently from the S/T to the IOM-2 interface. In all other states ’1’s are transmitted
to the IOM-2 interface.
To transfer data transparently to the S/T interface any activation request C/I command
(AR8, AR10 or ARL) is additionally necessary or if the internal layer-1 statemachine is
disabled, bit TDDIS of register TR_CMD has additionally to be programmed to ’0’.
Figure 22 shows the data delay between the IOM-2 and the S/T interface and vice
versa.
For the D channel the delay from the IOM-2 to the S/T interface is only valid if S/G
evaluation is disabled (MODED.DIM0=0). If S/G evaluation is enabled
(MODED.DIM2-0=0x1) the delay depends on the selected priority and the relation
between the echo bits on S and the D channel bits on the IOM-2, e.g. for priority 8 the
timing relation between the 8th D-bit on S bus and the D-channel on IOM-2.
E
NT -> TE
F
D
E
B1
B2
D
TE -> NT
F
B1
B2
D
E
D
E
B1
B2
D
D
B1
D
E
F
E
B1
D
B2
D
F
B2
D
B1
B2
D
E
D
E
B1
B2
D
D
B1
D
D
B2
FSC
DU
B1 B2 D
B1 B2 D
B1 B2 D
B1 B2 D
DD
B1 B2 D
Figure 22
Data Sheet
E
B1 B2 D
E
B1 B2 D
E
B1 B2 D
E
line_iom_s.vsd
Data Delay between IOM-2 and S/T Interface (TE mode only)
55
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
E
NT -> TE
F
D
E
B1
B2
D
TE -> NT
F
B1
B2
D
E
D
E
B1
B2
D
D
B1
D
E
F
E
B1
D
B2
D
F
B2
D
B1
D
E
D
E
B1
B2
D
D
B2
B1
D
D
B2
FSC
DU
B1 B2 D
B1 B2 D
B1 B2 D
B1 B2 D
DD
B1 B2 D
E
B1 B2 D
E
B1 B2 D
E
B1 B2 D
Mapping of B-Channel Timeslots
Mapping of a 4-bit group of D-bits on S and IOM depends on prehistory (e.g. priority control):
1. Possibility
2. Possibility
Figure 23
E
line_iom_s_dch.vsd
Data Delay between IOM-2 and S/T Interface with S/G Bit Evaluation
(TE mode only)
LT-T mode
In this mode the frame relation between S/T interface and IOM-2 is flexible.
LT-S/NT mode
In the state F7 (Activated) or if the internal layer-1 statemachine is disabled and XINF of
register TR_CMD is programmed to ’011’ the B1, B2 and D bits are transferred
transparently from the S/T to the IOM-2 interface. In all other states ’1’s are transmitted
to the IOM-2 interface.
Note: In intelligent NT the D-channel access can be blocked by the IOM-2 D-channel
handler.
Data Sheet
56
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
E
NT -> TE
F
D
E
B1
D
B2
D
F
TE -> NT
B1
E
D
E
B1
B2
D
D
B2
B1
D
E
F
D
B1
D
B2
D
B2
E
D
F
B1
E
D
E
B1
B2
D
D
B2
B1
D
D
B2
FSC
DD
B1 B2
D
B1 B2
D
B1 B2
D
B1 B2
D
B1 B2
D
B1 B2
D
B1 B2
D
B1 B2
D
DU
Figure 24
Data Delay between IOM-2 and S/T Interface with 8 IOM Channels
(LT-S/NT mode only)
E
NT -> TE
F
D
E
B1
D
B2
D
F
TE -> NT
line_iom_s4nt.vsd
B1
B2
E
F
B1
E
B1
B2
D
D
B1
D
TE -> NT (42µs)
D
E
F
D
B2
F
D
B2
D
B1
B2
D
D
D
B1
E
B1
D
D
B2
D
B2
F
B1
E
D
E
B1
B2
D
D
B1
D
B2
D
B2
D
D
B1
D
B2
FSC
DU
B1 B2 D
B1 B2 D
B1 B2 D
B1 B2 D
DD
B1 B2 D
Figure 25
Data Sheet
E
B1 B2 D
E
B1 B2 D
E
B1 B2 D
E
line_iom_s4nt_dly.vsd
Data Delay between IOM-2 and S/T Interface with 3 IOM Channels and
Maximum Receive Delay(LT-S/NT mode only)
57
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.3.5
Transmitter Characteristics
The full-bauded pseudo-ternary pulse shaping is achieved with the integrated transmitter
which is realized as a symmetrical current limited voltage source (VSX1/SX2 = +/-1.0 V;
Imax = 26 mA). The equivalent circuit of the transmitter is shown in Figure 26.
The nominal pulse amplitude on the S-interface 750 mV (zero-peak) is adjusted with
external resistors ( see Chapter 3.3.7.1).
VCM+0.525V
VCM
VCM-0.525V
'+0'
'1'
'-0'
+
SX1
V=1
-
Level
VCM-0.525V
VCM
VCM+0.525V
Figure 26
Data Sheet
'+0'
'1'
VCM
TR_CONF2.DIS_TX
'+0' '1' '-0'
-
SX2
V=1
+
'-0'
21150_28
Equivalent Internal Circuit of the Transmitter Stage
58
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.3.6
Receiver Characteristics
The receiver consists of a differential input stage, a peak detector and a set of
comparators. Additional noise immunity is achieved by digital oversampling after the
comparators. A simplified equivalent circuit of the receiver is shown in Figure 27.
100 kW
10 kW
SR1
40 kW
VrefLD
Level detected
Vrefmin
10 kW
SR2
40 kW
VCM
Vref+
Positive detected
Peak
Detector Vref-
Negative detected
reccirc
Figure 27
Equivalent Internal Circuit of the Receiver Stage
The input stage works together with external 10 kW resistors to match the input voltage
to the internal thresholds. The data detection threshold Vref is continuously adapted
between a maximal (Vrefmax) and a minimal (Vrefmin) reference level related to the line
level. The peak detector requires maximum 2 ms to reach the peak value while storing
the peak level for at least 250 ms (RC > 1 ms).
The additional level detector for power up/down control works with a fixed thresholds
VrefLD. The level detector monitors the line input signals to detect whether an INFO is
present. When closing an analog loop it is therefore possible to indicate an incoming
signal during activated loop.
Data Sheet
59
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.3.7
S/T Interface Circuitry
For both, receive and transmit direction a 1:1 transformer is used to connect the ISACSX transceiver to the 4 wire S/T interface. Typical transformer characteristics can be
found in the chapter on electrical characteristics. The connections of the line
transformers is shown in Figure 28.
3.3 V
1:1
SX1
VDD
Protection
Circuit
Transmit
Pair
SX2
10 µF
1:1
SR1
Protection
Circuit
VSS
GND
Receive
Pair
SR2
21150_05
Figure 28
Connection of Line Transformers and Power Supply to the ISAC-SX
For the transmit direction an external transformer is required to provide isolation and
pulse shape according to the ITU-T recommendations.
3.3.7.1
External Protection Circuitry
The ITU-T I.430 specification for both transmitter and receiver impedances in TEs results
in a conflict with respect to external S-protection circuitry requirements:
– To avoid destruction or malfunction of the S-device it is desirable to drain off even
small overvoltages reliably.
– To meet the 96 kHz impedance test specified for transmitters and receivers (for TEs
only, ITU-T I.430 sections 8.5.1.2a and 8.6.1.1) the protection circuit must be
dimensioned such that voltages below 1.2 V (ITU-T I.430 amplitude) x transformer
ratio are not affected.
This requirement results from the fact that this test is also to be performed with no supply
voltage being connected to the TE. Therefore the second reference point for
overvoltages VDD, is tied to GND. Then, if the amplitude of the 96 kHz test signal is
greater than the combined forward voltages of the diodes, a current exceeding the
specified one may pass the protection circuit.
The following recommendations aim at achieving the highest possible device protection
against overvoltages while still fulfilling the 96 kHz impedance tests.
Data Sheet
60
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Protection Circuit for Transmitter
SX1
5 ...10
Ohm
1:1
S Bus
SX2
Vdd
5 ... 10
Ohm
21150_23
Figure 29
External Circuitry for Transmitter
Figure 29 illustrates the secondary protection circuit recommended for the transmitter.
The external resistors (5 ... 10 W) are required in order to adjust the output voltage to the
pulse mask on the one hand and in order to meet the output impedance of minimum 20 W
(transmission of a binary zero according to ITU-T I.430) on the other hand.
Two mutually reversed diode paths protect the device against positive or negative
overvoltages on both lines.
An ideal protection circuit should limit the voltage at the SX pins from – 0.4 V to VDD
+ 0.4 V. With the circuit In Figure 29 the pin voltage range is increased from – 1.4 V to
VDD + 0.7 V. The resulting forward voltage of 1.4 V will prevent the protection circuit from
becoming active if the 96 kHz test signal is applied while no supply voltage is present.
Data Sheet
61
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Protection Circuit for Receiver
Figure 30 illustrates the external circuitry used in combination with a symmetrical
receiver. Protection of symmetrical receivers is rather simple.
1:1
S Bus
Note: up to 10 pF capacitors are optional for noise reduction
Figure 30
External Circuitry for Symmetrical Receivers
Between each receive line and the transformer a 10 kW resistor is used. This value is
split into two resistors: one between transformer and protection diodes for current limiting
during the 96 kHz test, and the second one between input pin and protection diodes to
limit the maximum input current of the chip.
With symmetrical receivers no difficulties regarding LCL measurements are observed;
compensation networks thus are obsolete.
In order to comply to the physical requirements of ITU-T recommendation I.430 and
considering the national requirements concerning overvoltage protection and
electromagnetic compatibility (EMC), the ISAC-SX may need additional circuitry.
3.3.7.2
S-Transceiver Synchronization
Synchronization problems can occur on a S-Bus that is not terminated properly.
Therefore, it is recommended to change the resistor values in the receive path. The sum
of both resistors is increased from 10 kW (1.8 + 8.2) to e.g. 34 kW (6.8 + 27) for either
receiver line. This change is possible but not necessary for a S-Bus that is terminated
properly.
Data Sheet
62
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
R1
R2
SR2
GND
1:1
S Bus
VDD
SR1
R1
R2
21150_33
Note: Capacitors (up to 10 pF) are optional for noise reduction.
Figure 31
External Circuitry for Symmetrical Receivers
Note: Lower or higher values than 34 kW may be used as well, however for values above
34 kW the additional delay must be compensated by setting TR_CONF2.PDS=1
(compensates 260 ns) so the allowed input phase delay is not violated.
3.3.8
S/T Interface Delay Compensation (TE/LT-T mode)
The S/T transmitter is shifted by two S/T bits minus 7 oscillator periods (plus analog
delay plus delay of the external circuitry) with respect to the received frame. To
compensate additional delay introduced into the receive and transmit path by the
external circuit the delay of the transmit data can be reduced by another two oscillator
periods (2 x 130 ns). Therefore PDS of the TR_CONF2 register must be programmed to
’1’. This delay compensation might be necessary in order to comply with the "total phase
deviation input to output" requirement of ITU-T recommendation I.430 which specifies a
phase deviation in the range of – 7% to + 15% of a bit period.
3.3.9
Level Detection Power Down
If MODE1.CFS is set to ’0’, the clocks are also provided in power down state, whereas
if CFS is set to ’1’ only the analog level detector is active in power down state. All clocks,
including the IOM-2 interface, are stopped (DD, DU are ’high’, DCL and BCL are ’low’).
An activation initiated from the exchange side will have the consequence that a clock
signal is provided automatically if TR_CONF0.LDD is set to ’0’. If TR_CONF0.LDD is set
to ’1’ the microcontroller has to take care of an interrupt caused by the level detect circuit
(ISTATR.LD)
From the terminal side an activation must be started by setting and resetting the SPUbit in the IOM_CR register and writing TIM to the CIX0 register or by resetting
MODE1.CFS=0.
Data Sheet
63
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.3.10
Transceiver Enable/Disable
The layer-1 part of the ISAC-SX can be enabled/disabled by configuration (see
Figure 32) with the two bits TR_CONF0.DIS_TR and TR_CONF2.DIS_TX.
By default all layer-1 functions with the exception of the transmitter buffer is enabled
(DIS_TR = ’0’, DIS_TX = ’1’). With several terminals connected to the S/T interface,
another terminal may keep the interface activated although the ISAC-SX does not
establish a connection. The receiver will monitor for incoming calls in this configuration.
If the transceiver is disabled (DIS_TR = ’1’) all layer-1 functions are disabled including
the level detection circuit of the receiver. In this case the power consumption of the
Layer-1 is reduced to a minimum. The HDLC controller can still operate via IOM-2. The
DCL and FSC pins become input.
TR_CONF0.DIS_TR
TR_CONF2.DIS_TX
’1’
’0’
Figure 32
3.3.11
Disabling of S/T Transmitter
Test Functions
The ISAC-SX provides test and diagnostic functions for the S/T interface:
Note: For more details please refer to the application note “Test Function of new
S-Transceiver family”
– The internal local loop (internal Loop A) is activated by a C/I command ARL or by
setting the bit LP_A (Loop Analog) in the TR_CMD register if the layer-1 statemachine
is disabled.
The transmit data of the transmitter is looped back internally to the receiver. The data
of the IOM-2 input B- and D-channels are looped back to the output B- and Dchannels.
The S/T interface level detector is enabled, i.e. if a level is detected this will be
reported by the Resynchronization Indication (RSY) but the loop function is not
affected.
Data Sheet
64
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Depending on the DIS_TX bit in the TR_CONF2 register the internal local loop can be
transparent or non transparent to the S/T line.
– The external local loop (external Loop A) is activated in the same way as the internal
local loop described above. Additionally the EXLP bit in the TR_CONF0 register has
to be programmed and the loop has to be closed externally as described in Figure 33.
The S/T interface level detector is disabled.
This allows complete system diagnostics.
– In remote line loop (RLP) received data is looped back to the S/T interface. The Dchannel information received from the line card is transparently forwarded to the
output IOM-2 D-channel. The output B-channel information on IOM-2 is fixed to ‘FF’H
while this test loop is active. The remote line loop is programmable in
TR_CONF2.RLP.
SX1
100 W
SX2
SCOUT-S(X)
SR1
100 W
SR2
Figure 33
External Loop at the S/T-Interface
– transmission of special test signals on the S/T interface according to the modified AMI
code are initiated via a C/I command written in CIX0 register (see Chapter 3.5.4)
Two kinds of test signals may be transmitted by the ISAC-SX:
– The single pulses are of alternating polarity. One pulse is transmitted in each frame
resulting in a frequency of the fundamental mode of 2 kHz. The corresponding C/I
command is SSP (Send Single Pulses).
– The continuous pulses are of alternating polarity. 48 pulses are transmitted in each
frame resulting in a frequency of the fundamental mode of 96 kHz. The corresponding
C/I command is SCP (Send Continuous Pulses).
Data Sheet
65
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.4
Clock Generation
Figure 34 shows the clock system of the ISAC-SX. The oscillator is used to generate a
7.68 MHz clock signal (fXTAL). In TE mode the DPLL generates the IOM-2 clocks FSC
(8 kHz), DCL (1536 kHz) and BCL (768 kHz) synchronous to the received S/T frames.
In LT modes these pins are input and in LT-T mode an 1536 kHz clock synchronous to
S is output at SCLK which can be used for DCL input.
An internal clock divider provides an FSC (ACFG2.FBS=0) or BCL (ACFG2.FBS=1)
output on pin AUX5/FBOUT derived from the DCL clock. The output can be enabled via
ACFG2.A5SEL=1.
The FSC signal is used to generate the pulse lengths of the different reset sources C/I
Code, EAW pin and Watchdog (see Figure 3.2.4).
FSC (TE mode)
XTAL
f XTAL
7.68 MHz
OSC
DCL (TE mode)
DPLL
BCL (TE mode)
SCLK (LT-T mode)
SW Reset
C/I
EAW
Watchdog
ACFG2.FBS
Pin RSTO
Reset
Generation
125 µs £ t £ 250 µs
125 µs £ t £ 250 µs
125 µs £ t £ 250 µs
125 µs £ t £ 250 µs
ACFG2.A5SEL
FBOUT (FSC/BCL output)
21150_06
Figure 34
Data Sheet
Clock System of the ISAC-SX
66
2003-01-30
Data Sheet
o:1536 kHz
(SCLK) *5)
i
o:1536 kHz
(DIS_TR=0)
i:1536/768 kHz
(DIS_TR=1) *2)
o:768 kHz
(BCL)
i
o
DCL
BCL/SCLK
DU *6)
DD
67
CH0-2:
strap pins for IOM
channel select *4)
AUX0-2
general purpose
I/O pins
o:FSC (FBS=0) or
BCL (FBS=1)
AUX5/FBOUT o:FSC (FBS=0) or
(A5SEL=1) *3) BCL (FBS=1)
o
i:1536 kHz
(from SCLK)
or 4096 kHz
(from ext. PLL)
i:8 kHz
o:8 kHz
(DIS_TR=0)
i:8 kHz
(DIS_TR=1) *2)
FSC
pin:MODE1=0
MODE0=1
LT-T
pin: MODE0=0
TE
Clock Modes
Selected via
Table 9
o:FSC (FBS=0) or
BCL (FBS=1)
CH0-2:
strap pins for IOM
channel select *4)
CH0-2:
strap pins for IOM
channel select *4)
i
o
o:256 kHz or
768 kHz or
2048 kHz
(derived from
DCL/2)
i:512 kHz or
1536 kHz or
4096 kHz
o:FSC (FBS=0) or
BCL (FBS=1)
i
o
o:256 kHz or
768 kHz or
2048 kHz
(derived from
DCL/2)
i:512 kHz or
1536 kHz or
4096 kHz
i:8 kHz
bit:MODE2=0
MODE1=1
MODE0=0
pin:MODE1=1
MODE0=1
i:8 kHz
NT
LT-S
general purpose
I/O pins
o:FSC (FBS=0) or
BCL (FBS=1)
i
o
o:768 kHz
(derived from
DCL/2)
i:1536 kHz
i:8 kHz
bit:MODE2=1
MODE1=1
MODE0=1 or
MODE0=0 *1)
Int. NT
ISAC-SX
PEB 3086
Description of Functional Blocks
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Note: The IOM-2 interface is adaptive. This means in LT-S/NT and LT-T mode other
frequencies for BCL and DCL are possible in the range of 512-4096 kHz
(DCL) and 256-2048 kHz (BCL). For details please refer to the application
note “Reconfigurable PBX”.
Note: i = input; o = output;
For all input clocks typical values are given although other clock frequencies may
be used, too.
1) The modes TE, LT-T and LT-S can directly be selected by strapping the pins
MODE1 and MODE0. The mode can be reprogrammed in TR_MODE.MODE2-0
where NT and Intelligent NT can be selected additionally. In Int. NT mode MODE0
selects between NT state machine (0) and LT-S state machine (1).
2) In TE mode the S transceiver can be disabled (TR_CONF0.DIS_TR=1) so the
IOM clocks become inputs and with IOM_CR.CLKM the DCL input can be
selected to double clock (0) or single bit clock (1).
3) ACFG2.A5SEL=1 selects the FBOUT function (derived from IOM clocks) which
provides an FSC/BCL output clock if clocks are present on IOM.
4) The number of IOM channels depends on the DCL clock, e.g. with
DCL=1536 kHz 3 IOM channels and with DCL= 4096 kHz 8 channels are
available.
5) In LT-T mode the 1536 kHz output clock on SCLK is synchronous to the S
interface and can be used as input for the DCL clock.<
6) The direction input/output refers to the direction of the B- and D-channel data
stream across the S-transceiver. Due to the capabilites of the IOM-2 handler the
direction of some other timeslots may be different if this is programmed by the host
(e.g. for data exchange between different devices connected to IOM-2).
Data Sheet
68
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.4.1
Description of the Receive PLL (DPLL)
The receive PLL performs phase tracking between the F/L transition of the receive signal
and the recovered clock. Phase adjustment is done by adding or subtracting 0.5 or 1
XTAL period to or from a 1.536-MHz clock cycle. The 1.536-MHz clock is than used to
generate any other clock synchronized to the line.
During (re)synchronization an internal reset condition may effect the 1.536-MHz clock to
have high or low times as short as 130 ns. After the S/T interface frame has achieved
the synchronized state (after three consecutive valid pairs of code violations) the FSC
output in TE mode is set to a specific phase relationship, thus causing once an irregular
FSC timing.
The phase relationships of the clocks are shown in Chapter 35.
7.68 MHz
F-bit
1536 kHz *
* Synchronous to receive S/T. Duty Ratio 1:1 Normally
768 kHz
ITD09664
FSC
Figure 35
3.4.2
Phase Relationships of ISAC-SX Clock Signals
Jitter
The timing extraction jitter of the ISAC-SX conforms to ITU-T Recommendation I.430
(– 7% to + 7% of the S-interface bit period).
Data Sheet
69
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.4.3
Oscillator Clock Output C768
The ISAC-SX derives its system clocks from an external clock connected to XTAL1
(while XTAL2 is not connected) or from a 7.68 MHz crystal connected across XTAL1 and
XTAL2.
At pin C768 a buffered 7.68 MHz output clock is provided to drive further devices, which
is suitable in multiline applications for example (see Figure 36). This clock is not
synchronized to the S-interface.
In power down mode the C768 output is disabled (low signal).
7.68
MHz
XTAL1
XTAL2
C768
XTAL1
n.c.
n.c.
XTAL2
C768
XTAL1
n.c.
n.c.
XTAL2
C768
3086_12
Figure 36
Data Sheet
Buffered Oscillator Clock Output
70
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5
Control of Layer-1
The layer-1 activation/ deactivation can be controlled by an internal state machine via
the IOM-2 C/I0 channel or by software via the microcontroller interface directly. In the
default state the internal layer-1 state machine of the ISAC-SX is used. By setting the
L1SW bit in the TR_CONF0 register the internal state machine can be disabled and the
layer-1 commands, which are normally generated by the internal state machine are
written directly in the TR_CMD register or indications read from the TR_STA register
respectively.The ISAC-SX layer-1 control flow is shown in Figure 37.
Figure 37
Layer-1 Control
In the following sections the layer-1 control by the ISAC-SX state machine will be
described. For the description of the IOM-2 C/I0 channel see also Chapter 3.7.4.
The layer-1 functions are controlled by commands issued via the CIX0 register. These
commands, sent over the IOM-2 C/I channel 0 to layer 1, trigger certain procedures,
such as activation/deactivation, switching of test loops and transmission of special pulse
patterns. These procedures are governed by layer-1 state diagrams. Responses from
layer 1 are obtained by reading the CIR0 register after a CIC interrupt (ISTA).
The state diagrams of the ISAC-SX are shown in Figure 39 and Figure 40. The
activation/deactivation implemented by the ISAC-SX agrees with the requirements set
forth in ITU recommendations. State identifiers F1-F8 are in accordance with ITU I.430.
Data Sheet
71
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
State machines are the key to understanding the transceiver part of the ISAC-SX. They
include all information relevant to the user and enable him to understand and predict the
behaviour of the ISAC-SX. The state diagram notation is given in Figure 38. The
informations contained in the state diagrams are:
–
–
–
–
–
state name (based on ITU I.430)
S/T signal transmitted (INFO)
C/I code received
C/I code transmitted
transition criteria
The coding of the C/I commands and indications are described in detail in Chapter 3.5.4.
ISAC-SX
IPAC
IPAC
OUT
IN
IOM-2 Interface
C /Ι
Ind.
Cmd.
Unconditional
Transition
State
S / T Interface
INFO
ix
ir
ITD09657
Figure 38
State Diagram Notation
The following example illustrates the use of a state diagram with an extract of the TE
state diagram. The state explained is “F3 deactivated”.
The state may be entered:
– from the unconditional states (ARL, RES, TM)
– from state “F3 pending deactivation”, “F3 power up”, “F4 pending activation” or “F5
unsynchronized” after the C/I command “DI” has been received.
The following informations are transmitted:
– INFO 0 (no signal) is sent on the S/T-interface.
C/I message “DC” is issued on the IOM-2 interface.
The state may be left by either of the following methods:
– Leave for the state “F3 power up” in case C/I = “TIM” code is received.
– Leave for state “F4 pending activation” in case C/I = AR8 or AR10 is received.
Data Sheet
72
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
– Leave for the state “F6 synchronized” after INFO 2 has been recognized on the S/Tinterface.
– Leave for the state “F7 activated” after INFO 4 has been recognized on the S/Tinterface.
– Leave for any unconditional state if any unconditional C/I command is received.
As can be seen from the transition criteria, combinations of multiple conditions are
possible as well. A “*” stands for a logical AND combination. And a “+” indicates a logical
OR combination.
The sections following the state diagram contain detailed information on all states and
signals used.
3.5.1
State Machine TE and LT-T Mode
3.5.1.1
State Transition Diagram (TE, LT-T)
Figure 39 shows the state transition diagram of the ISAC-SX state machine. Figure 40
shows this for the unconditional transitions (Reset, Loop, Test Mode i).
Data Sheet
73
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
DC
i4
DI
F3
Deactivated
i0
TIM
i0
AR i2
DI
PU AR2)
AR
F4
Pending Act.
TIM
i0
i1
DI
RSY
i0
i2
i4
X
TIM
F5
Unsynchronized DI
i0
TIM
F3
Power Up
i0
i0
i4
PU
X
DI
Uncond. State
TIM
ix
i2
AR
X
X4)
F6
Synchronized
i0*TO1
i2
i3
ix
i4
RSY
i2
i4
X
F8
Lost Framing
i2
i0
i0
DI
TIM
i0*TO1
i2
DI*TO2
ix
AI3) AR2)
F7
Activated
i3
TO1:
TO2:
i4
i0*TO1
i4
DR1)
X
F3
Pending Deact.
i0
TIM*TO2
i0
16 ms
0.5 ms
1)
DR for transition from F7 or F8
DR6 for transition from F6
AR stands for AR8 or AR10
3)
AI stands for AI8 or AI10
4)
X stands for commands initiating unconditional
transitions (RES, ARL, SSP or SCP)
2)
Figure 39
Data Sheet
statem_te_s.vsd
State Transition Diagram (TE, LT-T)
74
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
SSP
SCP
ARL
TIM
SSP
TMA SCP
TIM
ARL ARL
DI
Test Mode i
DI
iti
RST
*
Loop A Closed
i3
TIM
DI
RES RES
Reset
i0
*
*
i3
i3
RES
TIM
DI
AIL ARL
RSY
Any
State
Loop A Activated
i3
*
statem_te_aloop_s.vsd
Figure 40
3.5.1.2
State Transition Diagram of Unconditional Transitions (TE, LT-T)
States (TE, LT-T)
F3 Pending Deactivation
State after deactivation from the S/T interface by info 0. Note that no activation from the
terminal side is possible starting from this state. A ’DI’ command has to be issued to enter
the state ’Deactivated State’.
F3 Deactivated State
The S/T interface is deactivated and the clocks are deactivated 500 µs after entering this
state and receiving info 0 if the CFS bit of the ISAC-SX Configuration Register is set to
“0“. Activation is possible from the S/T interface and from the IOM-2 interface. The bit
TR_CMD.PD is set and the analog part is powered down.
F3 Power Up
The S/T interface is deactivated (info 0 on the line) and the clocks are running.
F4 Pending Activation
The ISAC-SX transmits info 1 towards the network, waiting for info 2.
F5 Unsynchronized
Data Sheet
75
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Any signal except info 2 or 4 detected on the S/T interface.
F6 Synchronized
The receiver has synchronized and detects info 2. Info 3 is transmitted to synchronize
the NT.
F7 Activated
The receiver has synchronized and detects info 4. All user channels are now conveyed
transparently to the IOM-2 interface.
To transfer user channels transparently to the S/T interface either the command AR8 or
AR10 has to be issued and TR_STA.FSYN must be “1” (signal from remote side must
be synchronous).
F8 Lost Framing
The receiver has lost synchronization in the states F6 or F7 respectively.
Unconditional States
Loop A Closed (internal or external)
The ISAC-SX loops back the transmitter to the receiver and activates by transmission of
info 3. The receiver has not yet synchronized.
For a non transparent internal loop the DIS_TX bit of register TR_CONF2 has to be set
to ’1’.
Loop A Activated (internal or external)
The receiver has synchronized to info 3. Data may be sent. The indication “AIL” is output
to indicate the activated state. If the loop is closed internally and the S/T line awake
detector detects any signal on the S/T interface, this is indicated by “RSY”.
Test Mode - SSP
Single alternating pulses are transmitted to the S/T-interface resulting in a frequency of
the fundamental mode of 2 kHz.
Test Mode - SCP
Continuous alternating pulses are transmitted to the S/T-interface resulting in a
frequency of the fundamental mode of 96 kHz.
Data Sheet
76
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5.1.3
C/I Codes (TE, LT-T)
Command
Abbr. Code Remark
Activation Request with
priority class 8
AR8
Activation Request with
priority class 10
AR10 1001 Activation requested by the ISAC-SX, Dchannel priority set to 10 (see note)
Activation Request Loop
ARL
1010 Activation requested for the internal or
external Loop A (see note).
For a non transparent internal loop bit
DIS_TX of register TR_CONF2 has to be set
to ’1’ additionally.
Deactivation Indication
DI
1111 Deactivation Indication
Reset
RES
0001 Reset of the layer-1 statemachine
Timing
TIM
0000 Layer-2 device requires clocks to be
activated
Test mode SSP
SSP
0010 One AMI-coded pulse transmitted in each
frame, resulting in a frequency of the
fundamental mode of 2 kHz
Test mode SCP
SCP
0011 AMI-coded pulses transmitted continuously,
resulting in a frequency of the fundamental
mode of 96 kHz
1000 Activation requested by the ISAC-SX, Dchannel priority set to 8 (see note)
Note: In the activated states (AI8, AI10 or AIL indication) the 2B+D channels are only
transferred transparently to the S/T interface if one of the three “Activation
Request” commands is permanently issued.
Indication
Abbr. Code Remark
Deactivation Request
DR
0000
Deactivation request via S/T-interface if left
from F7/F8
Reset
RES
0001
Reset acknowledge
Test Mode
Acknowledge
TMA
0010
Acknowledge for both SSP and SCP
Slip Detected
SLD
0011
Resynchronization
during level detect
RSY
0100
Data Sheet
Signal received, receiver not synchronous
77
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Indication
Abbr. Code Remark
Deactivation Request
from F6
DR6
0101
Deactivation Request from state F6
Power up
PU
0111
IOM-2 interface clocking is provided
Activation request
AR
1000
Info 2 received
Activation request loop
ARL
1010
Internal or external loop A closed
Illegal Code Violation
CVR
1011
Illegal code violation received. This function
has to be enabled by setting the EN_ICV bit of
register TR_CONF0.
Activation indication
loop
AIL
1110
Internal or external loop A activated
Activation indication
with priority class 8
AI8
1100
Info 4 received,
D-channel priority is 8 or 9.
Activation indication
with priority class 10
AI10
1101
Info 4 received,
D-channel priority is 10 or 11.
Deactivation
confirmation
DC
1111
Clocks are disabled if CFS bit of register
MODE1 is set to ’1’, quiescent state
Data Sheet
78
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5.1.4
Infos on S/T (TE, LT-T)
Receive Infos on S/T (Downstream)
Name
Abbr. Description
info 0
i0
No signal on S/T
info 2
i2
4 kHz frame
A=’0’
info 4
i4
4 kHz frame
A=’1’
info X
ix
Any signal except info 2 or info 4
Transmit Infos on S/T (Upstream)
Name
Abbr. Description
info 0
i0
No signal on S/T
info 1
i1
Continuous bit sequence of the form ’00111111’
info 3
i3
4 kHz frame
Test info 1
it1
SSP - Send Single Pulses
Test info 2
it2
SCP - Send Continuous Pulses
Data Sheet
79
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5.2
State Machine LT-S Mode
3.5.2.1
State Transition Diagram (LT-S)
RST
TIM RES
TIM
DR
Reset
i0
RES
DR
G4 Pend. Deact.
1)
ARD
*
DR
i0
DC
DI
ARD1)
Test Mode i
i0
it
(i0*16ms)+32ms
Any
State
SSP
TIM SCP
DC
*
SSP
SCP
Any
State
DR
G4 Wait for DR
i0
*
DC
DI DC
TIM 2)
DR
G1 Deactivated
i0
i0
(i0*8ms)+ARD1)
DC
AR ARD
G2 Pend. Act.
i2
DR
i3
i3
DC
RSY ARD
G2 Lost
Framing S/T
i2
i3
i3
AI
i3
DC
ARD
G3 Activated
i4
DR
i3
DR
1)
ARD = AR or ARL
2)
DI if i0
TIM if i0
s tatem_lts _s .v s d
Figure 41
State Transition Diagram (LT-S)
Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’
itself , i.e. C/I-code ’SSP/SCP’ must not be followed by C/I-code ’SCP/SSP’
directly.
Data Sheet
80
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5.2.2
States (LT-S)
G1 deactivated
The transceiver is not transmitting. There is no signal detected on the S/T-interface, and
no activation command is received in the C/I channel. The clocks are deactivated if
MODE1-CFS is set to 1. Activation is possible from the S/T interface and from the IOM-2
interface.
G2 pending activation
As a result of an INFO 0 detected on the S/T line or an ARD command, the transceiver
begins transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise
reception of INFO 3 is to be implemented in software. In case of an ARL command, loop
2 is closed.
G3 activated
Normal state where INFO 4 is transmitted to the S/T-interface. The transceiver remains
in this state as long as neither a deactivation nor a test mode is requested, nor the
receiver looses synchronism.
When receiver synchronism is lost, INFO 2 is sent automatically. After reception of
INFO 3, the transmitter keeps on sending INFO 4.
G2 lost framing
This state is reached when the transceiver has lost synchronism in the state G3
activated.
G4 pending deactivation
This state is triggered by a deactivation request DR. It is an unstable state: indication DI
(state “G4 wait for DR.”) is issued by the transceiver when:
either INFO0 is received for a duration of 16 ms,
or an internal timer of 32 ms expires.
G4 wait for DR
Final state after a deactivation request. The transceiver remains in this state until DC is
issued.
Unconditional States
Test mode - SSP
Single alternating pulses are sent on the S/T-interface.
Data Sheet
81
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Test mode - SCP
Continuous alternating pulses are sent on the S/T-interface.
3.5.2.3
C/I Codes (LT-S)
Command
Abbr.
Code
Remark
Deactivation
Request
DR
0000
DR - Deactivation Request. Initiates a complete
deactivation from the exchange side by
transmitting INFO 0.
Reset
RES
0001
Reset of state machine. Transmission of Info0.
No reaction to incoming infos. RES is an
unconditional command.
Send Single Pulses
SSP
0010
Send Single Pulses.
Send Continuous
Pulses
SCP
0011
Send Continuous Pulses.
Activation Request
AR
1000
Activation Request. This command is used to
start an exchange initiated activation.
Activation Request
Loop
ARL
1010
Activation request loop. The transceiver is
requested to operate an analog loop-back close
to the S/T-interface.
Activation Indication AIL
Loop
1110
Activation Indication Loop
Deactivation
Confirmation
DC
1111
Deactivation Confirmation. Transfers the
transceiver into a deactivated state in which it
can be activated from a terminal (detection of
INFO 0 enabled).
Indication
Abbr.
Code
Remark
Timing
TIM
0000
Interim indication during activation procedure in
G1.
Receiver not
Synchronous
RSY
0100
Receiver is not synchronous
Activation Request
AR
1000
INFO 0 received from terminal. Activation
proceeds.
Illegal Code
Ciolation
CVR
1011
Illegal code violation received. This function
has to be enabled in TR_CONF0.EN_ICV.
Data Sheet
82
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Indication
Code
Remark
Activation Indication AI
1100
Synchronous receiver, i.e. activation
completed.
Deactivation
Indication
1111
Timer (32 ms) expired or INFO 0 received for a
duration of 16 ms after deactivation request
3.5.2.4
Abbr.
DI
Infos on S/T (LT-S)
Receive Infos on S/T (Downstream)
I0
INFO 0 detected
I0
Level detected (signal different to I0)
I3
INFO 3 detected
I3
Any INFO other than INFO 3
Transmit Infos on S/T (Upstream)
I0
INFO 0
I2
INFO 2
I4
INFO 4
It
Send Single Pulses (SSP).
Send Continuous Pulses (SCP).
Data Sheet
83
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5.3
State Machine NT Mode
3.5.3.1
State Transition Diagram (NT)
RST
TIM RES
TIM
DR
Reset
i0
DR
G4 Pend. Deact.
1)
ARD
*
RES
DR
i0
DI
Any
State
ARD1)
Test Mode i
i0
it
(i0*16ms)+32ms
DC
SSP
TIM SCP
DC
DR
*
SSP
SCP
Any
State
G4 Wait for DR
i0
*
DC
DR
DI DC
TIM 3)
G1 Deactivated
ARD1)
i0
i0
(i0*8ms)
AR
DC
G1 i0 Detected
i0
DR
*
ARD1)
AR ARD
G2 Pend. Act
i2
DR
i3
i3
AID
RSY ARD
G2 Lost
Framing S/T
i2
i3
i3*ARD
AI
i3*ARD1)
2)
i3*AID
ARD
G2 Wait for AID
RSY
i2
DR
i3
1)
AID2)
RSY
DR
RSY RSY
G3 Lost
Framing U
i2
*
ARD1)
AID2)
i3*AID2)
2)
ARD1)
AI
AID
G3 Activated
RSY
i4
3)
ARD = AR or ARL
AID =AI or AIL
DI if i0
TIM if i0
DR
i3
s ta te m_nt_s .v s d
Figure 42
State Transition Diagram (NT)
Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’
itself , i.e. C/I-code ’SSP/SCP’ must not be followed by C/I-code ’SCP/SSP’
directly
Data Sheet
84
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5.3.2
States (NT)
G1 Deactivated
The transceiver is not transmitting. There is no signal detected on the S/T-interface, and
no activation command is received in the C/I channel. The clocks are deactivated if the
bit MODE1.CFS to 1. Activation is possible from the S/T interface and from the IOM-2
interface.
G1 I0 Detected
An INFO 0 is detected on the S/T-interface, translated to an “Activation Request”
indication in the C/I channel. The transceiver is waiting for an AR command, which
normally indicates that the transmission line upstream (usually a two-wire U interface) is
synchronized.
G2 Pending Activation
As a result of the ARD command, an INFO 2 is sent on the S/T-interface. INFO 3 is not
yet received. In case of ARL command, loop 2 is closed.
G2 wait for AID
INFO 3 was received, INFO 2 continues to be transmitted while the transceiver waits for
a “switch-through” command AID from the device upstream.
G3 Activated
INFO 4 is sent on the S/T-interface as a result of the “switch through” command AID: the
B and D-channels are transparent. On the command AIL, loop 2 is closed.
G2 Lost Framing S/T
This state is reached when the transceiver has lost synchronism in the state G3
activated.
G3 Lost Framing U
On receiving an RSY command which usually indicates that synchronization has been
lost on the two-wire U interface, the transceiver transmits INFO 2.
G4 Pending Deactivation
This state is triggered by a deactivation request DR, and is an unstable state. Indication
DI (state “G4 wait for DR”) is issued by the transceiver when:
either INFO0 is received for a duration of 16 ms
Data Sheet
85
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
or an internal timer of 32 ms expires.
G4 wait for DR
Final state after a deactivation request. The transceiver remains in this state until DC is
issued.
Unconditional States
Test Mode SSP
Send Single Pulses
Test Mode SCP
Send Continuous Pulses
3.5.3.3
C/I Codes (NT)
Command
Abbr.
Code
Remark
Deactivation
Request
DR
0000
DR - Deactivation Request. Initiates a complete
deactivation from the exchange side by
transmitting INFO 0. Unconditional command.
Reset
RES
0001
Reset of state machine. Transmission of Info0.
No reaction to incoming infos. RES is an
unconditional command.
Send Single Pulses
SSP
0010
Send Single Pulses.
Send Continuous
Pulses
SCP
0011
Send Continuous Pulses.
Receiver not
Synchronous
RSY
0100
Receiver is not synchronous
Activation Request
AR
1000
Activation Request. This command is used to
start an exchange initiated activation.
Activation Request
Loop
ARL
1010
Activation request loop. The transceiver is
requested to operate an analog loop-back close
to the S/T-interface.
1100
Synchronous receiver, i.e. activation
completed.
Activation Indication AI
Data Sheet
86
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Command
Code
Remark
Activation Indication AIL
Loop
1110
Activation Indication Loop
Deactivation
Confirmation
DC
1111
Deactivation Confirmation. Transfers the
transceiver into a deactivated state in which it
can be activated from a terminal (detection of
INFO 0 enabled).
Indication
Abbr.
Code
Remark
Timing
TIM
0000
Interim indication during deactivation procedure
Receiver not
Synchronous
RSY
0100
Receiver is not synchronous
Activation Request
AR
1000
INFO 0 received from terminal. Activation
proceeds.
Illegal Code
Ciolation
CVR
1011
Illegal code violation received. This function
has to be enabled in TR_CONF0.EN_ICV.
Activation Indication AI
1100
Synchronous receiver, i.e. activation
completed.
Deactivation
Indication
1111
Timer (32 ms) expired or INFO 0 received for a
duration of 16 ms after deactivation request
Data Sheet
Abbr.
DI
87
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.5.4
Command/ Indicate Channel Codes (C/I0) - Overview
The table below presents all defined C/I0 codes. A command needs to be applied
continuously until the desired action has been initiated. Indications are strictly state
orientated. Refer to the state diagrams in the previous sections for commands and
indications applicable in various states.
Code
TE/LT-T
LT-S
NT
Cmd
Ind
Cmd
Ind
Cmd
Ind
0
0
0
0
TIM
DR
DR
TIM
DR
TIM
0
0
0
1
RES
RES
RES
–
RES
–
0
0
1
0
SSP
TMA
SSP
–
SSP
–
0
0
1
1
SCP
SLD
SCP
–
SCP
–
0
1
0
0
–
RSY
–
RSY
RSY
RSY
0
1
0
1
–
DR6
–
–
–
–
0
1
1
0
–
–
–
–
–
–
0
1
1
1
–
PU
–
–
–
–
1
0
0
0
AR8
AR
AR
AR
AR
AR
1
0
0
1
AR10
–
–
–
–
–
1
0
1
0
ARL
ARL
ARL
–
ARL
–
1
0
1
1
–
CVR
–
CVR
–
CVR
1
1
0
0
–
AI8
–
AI
AI
AI
1
1
0
1
–
AI10
–
–
–
–
1
1
1
0
–
AIL
–
–
AIL
–
1
1
1
1
DI
DC
DC
DI
DC
DI
Data Sheet
88
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.6
Control Procedures
3.6.1
Example of Activation/Deactivation
An example of an activation/deactivation of the S/T interface initiated by the terminal with
the time relationships mentioned in the previous chapters is shown in Figure 43.
NT/Linecard
TE
INFO 0
INFO 1
RSY
max. 6 ms
AR
INFO 2
INFO 3
AR
0.5 ms
INFO 4
AI
DR
16 ms
INFO 0
INFO 0
A_DEACT.DRW
Figure 43
Data Sheet
Example of Activation/Deactivation Initiated by the Terminal
89
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.6.2
Activation initiated by the Terminal
INFO 1 has to be transmitted as long as INFO 0 is received.
INFO 0 has to be transmitted thereafter as long as no valid INFO (INFO 2 or INFO 4) is
received.
After reception of INFO 2 or INFO 4 transmission of INFO 3 has to be started.
Data can be transmitted if INFO 4 has been received.
µC Interface
TE
S/T Interface
NT
INFO 0
TDDIS='1', XINF='010'
INFO 1
INFO 2
RINF='01'
XINF='000'
T1TE
INFO 0
RINF='10'
INFO 3
XINF='011'
INFO 4
RINF='11'
T2TE
TDDIS='0'
INFO 0
RINF='00'
TDDIS='1', XINF='000'
T3TE
INFO 0
INFO 0
T1TE: 2 to 6 frames (0.5 ms to 1.5 ms)
T2TE:
2 frames (0.5 ms)
4 frames (1 ms)
T3TE:
act_deac_te-ext_s.vsd
Figure 44
Example of Activation/Deactivation initiated by the Terminal (TE).
Activation/Deactivation completely under Software Control
Note: RINF and XINF are Receive- and Transmit-INFOs of register TR_STA.
Data Sheet
90
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.6.3
Activation initiated by the Network Termination NT
INFO 0 has to be transmitted as long as no valid INFO (INFO 2 or INFO 4) is received.
After reception of INFO 2 or INFO 4 transmission of INFO 3 has to be started.
Data can be transmitted if INFO 4 has been received.
µC Interface
TE
S/T Interface
NT
INFO 0
RINF='01'
INFO 2
T1TE
RINF='10'
TDDIS='1', XINF='011'
INFO 3
INFO 4
RINF='11'
T2TE
TDDIS='0'
INFO 0
RINF='00'
T3TE
TDDIS='1', XINF='000'
INFO 0
INFO 0
T1TE: 2 to 6 S/T frames (0.5 ms to 1.5 ms)
2 S/T frames (0.5 ms)
T2TE:
4 S/T frames (1 ms)
T3TE:
act_deac_lt_ext_s.vsd
Figure 45
Example of Activation/Deactivation initiated by the Network
Termination (NT).
Activation/Deactivation completely under Software Control
Note: RINF and XINF are Receive- and Transmit-INFOs of register TR_STA.
Data Sheet
91
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.7
IOM-2 Interface
The ISAC-SX supports the IOM-2 interface in linecard mode and in terminal mode with
single clock and double clock. The IOM-2 interface consists of four lines: FSC, DCL, DD
and DU. The rising edge of FSC indicates the start of an IOM-2 frame. The DCL and the
BCL clock signals synchronize the data transfer on both data lines DU and DD. The DCL
is twice the bit rate, the BCL rate is equal to the bit rate. The bits are shifted out with the
rising edge of the first DCL clock cycle and sampled at the falling edge of the second
clock cycle.
The IOM-2 interface can be enabled/disabled with the DIS_IOM bit in the IOM_CR
register.
TE Mode
A DCL signal and BCL signal (pin BCL/SCLK) output is provided and the FSC signal is
generated by the receive DPLL which synchronizes it to the received S/T frame.
The BCL clock together with the two serial data strobe signals (SDS1, SDS2) can be
used to connect time slot oriented standard devices to the IOM-2 interface. If the
transceiver is disabled (TR_CON.DIS_TR) the DCL and FSC pins become input and the
HDLC part can still work via IOM-2. In this case the clock mode bit (IOM_CR.CLKM)
selects between a double clock and a single clock input for DCL.
The clock rate/frequency of the IOM-2 signals in TE mode are:
DD, DU:
768 kbit/s
FSC (o):
8 kHz
DCL (o):
1536 kHz (double clock rate)
BCL (o):
768 kHz (single clock rate)
Option - Transceiver disabled (DIS_TR = ’1’):
FSC (i):
8 kHz
DCL (i):
1536 ... 4096 kHz, in steps of 512 kHz (double clock rate)
LT-S, LT-T, NT, iNT Mode
The IOM-2 clock signals FSC and BCL are input.
In LT-T mode a 1536 kHz output clock synchronous to S is provided at pin SCLK which
can directly be connected to the DCL input. Internal clock dividers provide for generation
of an FSC or BCL output clock at pin FBOUT derived from DCL (see Chapter 3.4).
DD, DU:
FSC (i):
DCL (i):
SCLK (o):
data rate = DCL/2 kbit/s (LT-T mode)
8 kHz
512 ... 4096 kHz, in steps of 512 kHz (double clock rate)
1536 kHz (LT-T mode), BCL derived via DCL/2 (LT-S/NT mode)
Note: In all modes the direction of the data lines DU and DD is not fix but depending on
the timeslot which can be seen in the figures below.
Data Sheet
92
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
IOM-2 Frame Structure (TE Mode)
The frame structure on the IOM-2 data ports (DU,DD) of a master device in IOM-2
terminal mode is shown in Figure 46.
Figure 46
IOMÒ-2 Frame Structure in Terminal Mode
The frame is composed of three channels
• Channel 0 contains 144-kbit/s of user and signaling data (2B + D), a MONITOR
programming channel (MON0) and a command/indication channel (CI0) for control
and programming of the layer-1 transceiver.
• Channel 1 contains two 64-kbit/s intercommunication channels (IC) plus a MONITOR
and command/indicate channel (MON1, CI1) to program or transfer data to other IOM2 devices.
• Channel 2 is used for the TlC-bus access. Only the command/indicate bits are
specified in this channel.
Data Sheet
93
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
IOM-2 Frame Structure (LT-S, LT-T Modes)
This mode is used in LT-S and LT-T applications. The frame is a multiplex of up to eight
IOM-2 channels (DCL = 4096 kHz, Figure 47), each of which has the structure
described above.
The reset value for assignment to one of the eight channels (0 to 7) is done via pin
strapping (CH0-2), however the host can reprogram the selected timeslot in
DCH_TSDP.TSS.
125 µ s
FSC
DCL
DD
IOM R CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH0
DU
IOM CH0
R
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH0
B1
Figure 47
B2
MONITOR
D
C/I
MM
RX
ITD09635
Multiplexed Frame Structure of the IOM-2 Interface
in Non-TE Timing Mode
IOM-2 Frame Structure (NT Mode)
In NT mode one IOM-2 channel is used (DCL= 512 kHz). The channel structure is the
same as described above.
Data Sheet
94
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.7.1
IOM-2 Handler
The IOM-2 handler offers a great flexibility for handling the data transfer between the
different functional units of the ISAC-SX and voice/data devices connected to the IOM-2
interface. Additionally it provides a microcontroller access to all timeslots of the IOM-2
interface via the four controller data access registers (CDA). Figure 48 shows the
architecture of the IOM-2 handler. For illustrating the functional description it contains all
configuration and control registers of the IOM-2 handler. A detailed register description
can be found in Chapter 4.4.
The PCM data of the functional units
• Transceiver (TR) and the
• Controller data access (CDA)
• B-channel HDLC controller
can be configured by programming the time slot and data port selection registers
(TSDP). With the TSS bits (Time Slot Selection) the PCM data of the functional units can
be assigned to each of the 32 PCM time slots of the IOM-2 frame. With the DPS bit (Data
Port Selection) the output of each functional unit is assigned to DU or DD respectively.
The input is assigned vice versa. With the data control registers (xxx_CR) the access to
the data of the functional units can be controlled by setting the corresponding control bits
(EN, SWAP).
The IOM-2 handler also provides access to the
•
•
•
•
MONITOR channel (MON)
C/I channels (C/I0,C/I1)
TIC bus (TIC) and
HDLC control
The access to these channels is controlled by the registers MON_CR, DCI_CR and
BCH_CR.
The IOM-2 interface with the two Serial Data Strobes (SDS1,2) is controlled by the
control registers IOM_CR, SDS1_CR and SDS2_CR.
The reset configuration of the ISAC-SX IOM-2 handler corresponds to the defined frame
structure and data ports of a master device in IOM-2 terminal mode (see Figure 46).
Data Sheet
95
2003-01-30
96
CDA_TSDPxy
CDAx_CRx
MCDA
STI
MSTI
ASTI
( DPS, TSS,
EN_TBM, SWAP,
EN_I1/0, EN_O1/0,
MCDAxy, STIxy,
STOVxy, ACKxy )
CDA Control
CDA Data
BCL/SCLK
FSC
DD
DU
MON Handler
TIC
IOM-2 Interface
C/I0
Data
DCIC_CR
(CS2-0)
C/I1
SDS2
SDS1
( ENS_TSS, ENS_TSS+1,
ENS_TSS+3, TSS, SDSx_BCL
Control HDLC Data
D-ch
(CS2-0,
D_EN_D,
D_EN_B1,
D_EN_B2)
FIFOs
B1-ch
BCH_TSDP_
B1/2,
BCH_CR
(DPS, TSS,
DPS_D,
EN_D,
EN_BC1,
EN_BC2,
CS2-0)
D-channel B-channel
DCI_CR
(DPS_CI1,
EN_CI1)
C/I1
Control C/I Data
C/I0
Microcontroller Interface
IOM_CR
(TIC_DIS)
(DPS, CS2-0,
EN_MON)
MON_CR
TIC Bus
Disable
Monitor Data
EN_BCL, CLKM, DIS_OD, DIS_IOM,
DIOM_INV, DIOM_SDS
C/I0 Data
DCL
TIC Bus Data
Control
Monitor Data
Note: The registers shown above are used to control
the corresponding functional block (e.g. programming
of timeslot, data port, enabling/disabling, etc.)
CDA10
CDA11
CDA20
CDA21
CDA Registers
Controller Data Access (CDA)
IOM_CR
SDS1/2_CR
SDS1/2_CR
C/I1 Data
Data Sheet
D Data
Figure 48
B Data
IOM-2 Handler
D, B1, B2, C/I0 Data
TR_TSDP_BC1
TR_TSDP_BC2
TRC_CR
(DPS, TSS,
CS2-0, EN_D,
EN_B1R,
EN_B1X,
EN_B2R,
EN_B2X )
Control
Transceiver
Data Access
3086_07
D-channel RX/TX
B1-channel RX
B1-channel TX
B2-channel RX
B2-channel TX
Transceiver
Data TR
ISAC-SX
PEB 3086
Description of Functional Blocks
.
Architecture of the IOM Handler (Example Configuration)
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
3.7.1.1
Controller Data Access (CDA)
With its four controller data access registers (CDA10, CDA11, CDA20, CDA21) the
ISAC-SX IOM-2 handler provides a very flexible solution for the host access to up to 32
IOM-2 time slots.
The functional unit CDA (controller data access) allows with its control and configuration
registers
• looping of up to four independent PCM channels from DU to DD or vice versa over the
four CDA registers
• shifting of two independent PCM channels to another two independent PCM channels
on both data ports (DU, DD). Between reading and writing the data can be
manipulated (processed with an algorithm) by the microcontroller. If this is not the
case a switching function is performed
• monitoring of up to four time slots on the IOM-2 interface simultaneously
• microcontroller read and write access to each PCM timeslot
The access principle which is identical for the two channel register pairs CDA10/11 and
CDA20/21 is illustrated in Figure 49. Each of the index variables x,y used in the following
description can be 1 or 2 for x and 0 or 1 for y. The prefix ’CDA_’ from the register names
has been omitted for simplification.
To each of the four CDAxy data registers a TSDPxy register is assigned by which the
time slot and the data port can be determined. With the TSS (Time Slot Selection) bits a
time slot from 0...31 can be selected. With the DPS (Data Port Selection) bit the output
of the CDAxy register can be assigned to DU or DD respectively. The time slot and data
port for the output of CDAxy is always defined by its own TSDPxy register. The input of
CDAxy depends on the SWAP bit in the control registers CRx.
• If the SWAP bit = ’0’ (swap is disabled) the time slot and data port for the input and
output of the CDAxy register is defined by its own TSDPxy register.
• If the SWAP bit = ’1’ (swap is enabled) the input port and timeslot of the CDAx0 is
defined by the TSDP register of CDAx1 and the input port and timeslot of CDAx1 is
defined by the TSDP register of CDAx0. The input definition for timeslot and data port
CDAx0 are thus swapped to CDAx1 and for CDAx1 swapped to CDAx0. The output
timeslots are not affected by SWAP.
The input and output of every CDAxy register can be enabled or disabled by setting the
corresponding EN (-able) bit in the control register CDAx_CR. If the input of a register is
disabled the output value in the register is retained.
Usually one input and one output of a functional unit (transceiver, HDLC controller, CDA
register) is programmed to a timeslot on IOM-2 (e.g. for B-channel transmission in
upstream direction the HDLC controller writes data onto IOM and the transceiver reads
data from IOM). For monitoring data in such cases a CDA register is programmed as
described below under “Monitoring Data”. Besides that none of the IOM timeslots must
be assigned more than one input and output of any functional unit.
Data Sheet
97
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
.
TSa
TSb
DU
Control
Register
1
CDAx0
0
1
1
1
1
1
CDAx1
1
1
0
CDA_TSDPx2
Enable
input *
output
(EN_I1)
(EN_O1)
Input
Swap
(SWAP)
input *
(EN_I0)
1
Time Slot
Selection (TSS)
0
Data Port
Selection (DPS)
Time Slot
Selection (TSS)
CDA_CRx
0
Enable
output
(EN_O0)
Data Port
Selection (DPS)
CDA_TSDPx1
1
DD
TSa
TSb
IOM_HAND.FM4
x = 1 or 2; a,b = 0...11
*) In the normal mode (SWAP=0) the input of CDAx0 and CDAx1 is enabled via EN_I0 and
EN_I1, respectively. If SWAP=1 EN_I0 controls the input of CDAx1 and EN_I1 controls the
input of CDAx0. The output control (EN_O0 and EN_O1) is not affected by SWAP.
Figure 49
Data Access via CDAx1 and CDAx2 register pairs
Looping and Shifting Data
Figure 50 gives examples for typical configurations with the above explained control and
configuration possibilities with the bits TSS, DPS, EN and SWAP in the registers
TSDPxy or CDAx_CR:
a) looping IOM-2 time slot data from DU to DD or vice versa (SWAP = 0)
b) shifting data from TSa to TSb and TSc to TSd in both transmission directions (SWAP
= 1)
c) switching data from TSa to TSb and looping from DU to DD or TSc to TSd and looping
from DD to DU respectively
TSa is programmed in TSDP10, TSb in TSDP11, TSc in TSDP20 and TSd in TSDP21.
It should also be noted that the input control of CDA registers is swapped if SWAP=1
while the output control is not affected (e.g. for CDA11 in example a: EN_I1=1 and
EN_O1=1, whereas for CDA11 in example b: EN_I0=1 and EN_O1=1).
Data Sheet
98
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
a) Looping Data
TSa
TSb
TSc
TSd
CDA10
CDA11
CDA20
CDA21
TSc
’1’
TSd
’1’
DU
DD
.TSS: TSa
TSb
.DPS ’0’
’0’
.SWAP
’0’
’0’
b) Shifting Data
TSa
TSb
TSc
TSd
CDA10
CDA11
CDA20
CDA21
DU
DD
.TSS: TSa
TSb
.DPS ’0’
’1’
.SWAP
’1’
c) Switching Data
TSa
TSb
CDA10
CDA11
TSc
’0’
TSd
’1’
’1’
TSc
TSd
CDA20
CDA21
DU
DD
.TSS: TSa
TSb
.DPS ’0’
’0’
.SWAP
’1’
Figure 50
TSc
’1’
TSd
’1’
’1’
Examples for Data Access via CDAxy Registers
a) Looping Data
b) Shifting (Switching) Data
c) Switching and Looping Data
Data Sheet
99
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
Figure 51 shows the timing of looping TSa from DU to DD (a = 0...11) via CDAxy
register. TSa is read in the CDAxy register from DU and is written one frame later on DD.
.
a = 0...11
FSC
DU
TSa
TSa
µC *)
DD
TSa
STOV
ACK
WR
RD
STI
CDAxy
TSa
*) if access by the µC is required
Figure 51
Data Access when Looping TSa from DU to DD
Figure 52 shows the timing of shifting data from TSa to TSb on DU (DD). In Figure 52a)
shifting is done in one frame because TSa and TSb didn’t succeed direct one another (a,
b = 0...9 and b ³ a+2. In Figure 52b) shifting is done from one frame to the following
frame. This is the case when the time slots succeed one other (b = a+1) or b is smaller
than a (b < a).
At looping and shifting the data can be accessed by the controller between the
synchronous transfer interrupt (STI) and the status overflow interrupt (STOV). STI and
STOV are explained in the section ’Synchronous Transfer’. If there is no controller
intervention the looping and shifting is done autonomous.
Data Sheet
100
2003-01-30
ISAC-SX
PEB 3086
Description of Functional Blocks
a) Shifting TSa ® TSb within one frame
(a,b: 0...11 and b ³ a+2)
FSC
DU
(DD)
TSa
TSa
TSb
µC *)
STI
STOV
ACK
WR
RD
STI
CDAxy
b) Shifting TSa ® TSb in the next frame
(a,b: 0...11 and (b = a+1 or b